Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 23 (1984), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract The S-adenosylmethionine (AdoMet) analog Sinefungin (SF) caused actively dividing cells of the yeast Saccharomyces cerevisiae to arrest within one cell cycle as unbudded cells. Reciprocal shift experiments showed that these cells were blocked in performance of the cell cycle regulatory step “start”. Both protein and RNA synthesis rates were only moderately affected during SF-mediated cell cycle arrest; these results indicate that SF provokes a different sort of metabolic response than found upon treatment with other “start”-arrest compounds.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 116 (1994), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract The temperature-sensitive dna mutants of the budding yeast Saccharomyces cerevisiae (Dumas et al. (1982) Mol. Gen. Genet. 187, 42–46) are more inhibited in DNA synthesis than in protein synthesis. These properties are also characteristics of many yeast mutations that inhibit progress through the cell cycle. Therefore we surveyed the collection of dna mutants for cell-cycle mutations. By genetic complementation we found that dna1 = cdc22, dna6 = cdc34, dna19 = cdc36, and dna39 = dbf3. Furthermore, by direct gene cloning we found that the dna26 mutation is allelic to prt1 mutations, which are known to exert primary inhibition on protein synthesis. This protein-synthesis mutation exerts a dna phenotype due to cell-cycle inhibition: prt1 mutations can block the regulatory step of the cell cycle while allowing significant amounts of protein synthesis to continue. Our non-exhausive screening suggests that the dna mutants may house other mutations that affect the yeast cell cycle.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0983
    Keywords: Nutrient modulation ; Critical size ; Cell cycle ; “Start”
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary For the budding yeast Saccharomyces cerevisiae the mitotic cell cycle is coordinated with cell mass at the regulatory step “start”. The threshold amount of cell mass (reflected as a “critical size”) necessary for “start” is proportional to nutrient quality. This relationship leads to a transient accumulation of cells at “start”, termed nutrient modulation, upon enrichment of nutrient conditions. Nutrient enrichment abruptly increases the critical size needed for “start”, causing the smaller cells, produced in the previous cell cycle, to be delayed at “start” while growing larger. Here we show that, in S. cerevisiae, a second cell-cycle step, at mitosis, also exhibits nutrient modulation, and is, therefore, another point of cell-cycle regulation. At both mitosis and “start”, nutrient modulation was found through mutation to be regulated by the activity of the cyclin-related WHI1 (CLN3) gene product.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Stationary phase ; mtDNA ; Storage carbohydrate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Double-mutant cells of the budding yeast Saccharomyces cerevisiae harboring the gcs1-1 and sed1-1 mutations are conditionally defective (cold-sensitive) only for reentry into the mitotic cycle from stationary phase. If already proliferating at the permissive temperature (29°C), these reentry-mutant cells continue to proliferate when transferred to the restrictive temperature of 14°C, but under these conditions reentry-mutant cells lose mitochondrial DNA (mtDNA). In addition, upon exhaustion of the nutrient supply at 14°C, these reentry-mutant cells entered stationary phase at a decreased cell concentration and did not accumulate the reserve carbohydrates trehalose and glycogen. Both of these deficiencies were due to the loss of mtDNA, as shown by the responses of wild-type cells also lacking mtDNA. Mitochondrial status did not affect other aspects of the reentry-mutant phenotype. Although mitochondrial activity and the accumulation of carbohydrate reserves are typical features of cells in stationary phase, the reentry-mutant phenotype reveals that neither entry into nor exit from stationary phase need involve mitochondrial function.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; RNA polymerase II ; Cyclins ; Transcription ; Cell cycle
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Saccharomyces cerevisiae cells harboring the temperature-sensitive mutation rpo21-4, in the gene encoding the largest subunit of RNA polymerase II, were shown to be partially impaired for cell-cycle progress at a permissive temperature, and to become permanently blocked at the cell-cycle regulatory step, START, at a restrictive temperature. The rpo21-4 mutation was lethal in combination with cdc28 mutations in the p34 protein kinase gene required for START. Transcripts of the CLN1 and CLN2 genes, encoding G1-cyclin proteins that, along with p34, are necessary for START, were decreased in abundance by the rpo21-4 mutation at a restrictive temperature. Increased G1-cyclin production, by expression of the CLN1 or CLN2 genes from a heterologous GAL promoter, overcame the rpo21-4 — mediated START inhibition, but such mutant cells nevertheless remained unable to proliferate at a restrictive temperature. These findings reveal that START can be particularly sensitive to an impaired RNA polymerase II function, presumably through effects on G1-cyclin expression.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1617-4623
    Keywords: Protein synthesis ; Translation initiation eIF-4E ; cdc33 ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Eukaryotic mRNA molecules have a 5′ cap structure that is recognized by the cap-binding component of translation initiation factor eIF-4F during protein synthesis. In the budding yeast Saccharomyces cerevisiae this cap-binding protein is encoded by the CDC33 gene. We report here that decreased global translation initiation in cdc33 mutant cells has virtually no effect on the translation of mRNA from the SSA1 -lacZ chimeric gene, comprised of yeast SSA1 hsp70 gene transcription and translation initiation sequences fused in-frame to the bacterial lacZ gene. When global translation initiation was limited in cdc33 mutant cells, Ssal-LacZ polypeptide synthesis was increased relative to total protein synthesis, and the β-galactosidase activity of the SsaI-LacZ fusion protein was induced to wild-type levels. The normal rate of Ssal-LacZ polypeptide synthesis in mutant cells was maintained by normal levels of SSA1 -lacZ mRNA. Furthermore, in cdc33 mutant cells, the size of polysomes containing SSA1-lacZ mRNA was unaffected, while polysomes containing other specific mRNAs were smaller. Efficient Ssal-LacZ polypeptide synthesis was also seen during eIF-4F limitation produced by disruption of the TIF4631 gene, encoding the large eIF-4F subunit. All of these findings indicate efficient SSA1-lacZ mRNA usage under conditions of globally impaired translation initiation due to eIF-4F limitation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0749-503X
    Keywords: yeast ; Start ; nalidixic acid ; ERG6 ; ARO7 ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: The regulatory step Start in the cell cycle of the budding yeast Saccharomyces cerevisiae is inhibited by nalidixic acid (Nal). To study this inhibition, mutations were identified that alter the sensitivity of yeast cells to Nal. Nal-sensitive mutations were sought because the inhibitory effects of Nal on wild-type cells are only transient, and wild-type cells naturally become refractory to Nal. Three complementation groups of Nal-sensitive mutations were found. Mutations in the first complementation group were shown to reside in the ARO7 gene, encoding chorismate mutase; tyrosine and phenylalanine synthesis was inhibited by Nal in these aro7 mutants, whereas wild-type chorismate mutase was unaffected. These aro7 alleles demonstrate ‘recruitment’, by mutation, of an innately indifferent protein to an inhibitor-sensitive form. The Nal-sensitive aro7 mutant cells were used to show that the resumption of Nal-inhibited nuclear activity and cell proliferation takes place while cytoplasmic Nal persists at concentrations inhibitory for the mutant chorismate mutase. Mutations in the second complementation group, nss2 (Nal-supersensitive), increased intracellular Nal concentrations, and may simply alter the permeability of cells to Nal. The third complementation group was found to be the ERG6 gene, previously suggested to encode the ergosterol biosynthetic enzyme sterol methyltransferase. Mutation or deletion of the ERG6 gene had little effect on the inhibition of Start by Nal, but prevented recovery from this inhibition. Mutation of ERG3, encoding another ergosterol biosynthetic enzyme, also caused Nal sensitivity, suggesting that plasma membrane sterol composition, and plasma membrane function, mediates recovery from Nal-mediated inhibition of Start.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...