Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 43 (1994), S. 764-771 
    ISSN: 0006-3592
    Keywords: surface morphology ; photolithography ; substrata, grooved ; Cell shape ; cell spreading ; cell adhesion ; DNA Synthesis ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Among the host of substratum properties that affect animal cell behavior, surface morphology has received relatively little attention. The earliest effect of surface morphology on animal cells was discovered almost a century ago when it was found that cells became oriented in response to the underlying topography. This phenomenon is now commonly known as contact guidance. From then until very recentrly, little progress has been made in understanding the role of surface morphology on cell behavior, primarily due to a lack of defined surfaces with uniform morphologies. This problem has been solved recently with the development of photolithographic techniques to prepare substrata with well defined and uniform surface morphologies. Availability of such surfaces has facilitated systematic in vitro experiments to study influence of surface morphology on diverse cell physiological aspects such as adhesion, growth, and function. For example, these studies have shown that surfaces with uniform multipls parallel grooves can enhance cell adhesion by confining cells in grooves and by mechanically interlocking them. Several independent studies have demosterated that cell shape is a major determinant of cell growth and function. Because surface morphology has been shown to modulate the extent of cell spreading and cell shape, its effects on cell growth and function appear to be mediated via this biological coupling between cell shape and function. New evidence in the cell biology literature is emerging to suggest that surface morphology could affect other cell behavioral properties such as post-translational modifications. Further elucidation of such effects will enable better designs for implant and cell culture substrata.
    Additional Material: 1 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-0778
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-0778
    Keywords: virus ; production ; monitoring ; process ; VZV ; MRC-5 ; metabolism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract A rapid, in-process assessment of virus replication is disired to quickly investigate the effects of process parameters on virus infection, and to monitor consistency of process in routine manufacturing of viral vaccines. Live virus potency assays are generally based on plaque formation, cytopathic effect, or antigen production (TCID50) and can take days to weeks to complete. Interestingly, when infected with viruses, cultured cells undergo changes in cellular metabolism that can be easily measured. These phenomena appear to be common as they has been observed in a variety of virus-host systems, e.g., in insect cells infected with baculovirus, Vero cells infected with Rotavirus, MRC-5 cells infected with Hepatitis A virus, and MRC-5 cells infected with the Varicella Zoster Virus (VZV). In this article, changes in glycolytic metabolism of MRC-5 cells as a result of CVZ infection are described. Both glucose consumption and lactate production in VZV infected MRC-5 cells are significantly elevated in comparison to uninfected cells. Based on this result, a rapid, in-process assay to follow VZV infection has been developed. The relative increase in lactate production in infected cells (α) increases as the infection progresses and then plateaus as the infection peaks. This plateau correlates with time of peak virus titer and could be used as a harvest triggering parameter in a virus production process. Xu = cell density of uninfected cells Xi = cell density of infected cells XT = total cell density Li = cumulative lactate production in infected cultures Lu = cumulative lactate production in uninfected cultures qLi = specific lactate production of infected cells qLu = specific lactate production of uninfected cells k1, K2 = constants
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...