Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 61 (1993), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: A possible role for protein kinases in the regulation of free cytosolic Ca2+ levels in nerve endings was investigated by testing the effect of several kinase inhibitors on the increase in cytosolic Ca2+ (monitored with the Ca2+-sensitive dye fura-2) induced by depolarization with 15 or 30 mM K+. The ability of various drugs to inhibit the cytosolic Ca2+ response appeared to correlate with their reported mechanism of action in inhibiting protein kinases. W-7 and trifluoperazine, drugs reported to inhibit calmodulin-dependent events, were effective inhibitors of the increase in cytosolic Ca2+ induced by high K+ depolarization, as was sphingosine, a drug that inhibits protein kinase C by binding to the regulatory site, but which also inhibits calcium/calmodulin kinase. On the other hand, drugs that inhibit protein kinases by binding to the catalytic site, such as H-7 (1 m/W), staurosporine (1μM), and K252a(1μM), were ineffective. Activation of protein kinase C, which is blocked by each of these drugs, does not appear to be essential to the maintenance of elevated cytosolic Ca2+ in depolarized synaptosomes. All of the drugs, including sphingosine, that functionally inhibit the depolarization-induced elevation in cytosolic Ca2+ have in common the ability to bind to calmodulin. Because the drugs that inhibit protein kinases by competing with ATP binding at the active catalytic site did not block the response in this system, we suggest that a calmodulin or a calmodulin-like binding site participates in the regulation of Ca2+ increases after depolarization.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 53 (1989), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The effects of two organic Ca2+ antagonists (verapamil and nitrendipine) and of two inorganic Ca2+ channel blockers (Co2+ and ruthenium red) on the Na+-dependent release of γ-amino-n-butyric acid (GABA) triggered by veratrine and monensin in the absence of external Ca2+ were studied in mouse brain synaptosomes. Ca2+-independent release of GABA stimulated by the Na+ channel activator veratrine was inhibited with micromolar concentrations of verapamil and nitrendipine. In contrast, GABA release induced by the Na+ ionophore monensin was insensitive to the organic Ca2+ antagonists. Verapamil also failed to modify A23187-stimulated release of GABA in the presence of Ca2+ but inhibited high K+-induced release of the transmitter. Co2+ partially diminished veratrine-induced release but did not change monensin-induced release. Releasing responses to monensin and veratrine were insensitive to ruthenium red, which inhibited the Ca2+-dependent component of GABA release evoked by high K+ depolarization. These data demonstrate that the mechanism of inducing GABA release is different for veratrine and monensin, as evidenced by their differing sensitivities to inhibition by Ca2+ channel antagonists and organic Ca2+ blockers. It is concluded that voltage-sensitive Ca2+ channels of the presynaptic membrane are not involved in the inhibitory action of Ca2+ antagonists on the Na+-de-pendent, Ca2+-independent mechanism of GABA release.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 53 (1989), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The action of the polyether antibiotic monensin on the release of γ-[3H]amino-n-butyric acid ([3H]GABA) from mouse brain synaptosomes is characterized. Monensin enhances the release of this amino acid transmitter in a dose-dependent manner and does not modify the efflux of the nontransmitter amino acid α-[3H]aminoisobMtyrate. The absence of external Ca2+ fails to prevent the stimulatory effect of monensin on [3H]GABA release. Furthermore, monensin is less effective in stimulating [3H]GABA release in the presence of Ca2+. The releasing response to monensin is absolutely dependent on external Na+. The blockade of voltage-sensitive Na+ or Ca2+ channels does not modify monensin-induced release of the transmitter. Also, the blockade of the GABA uptake pathway fails to prevent the stimulatory effect of monensin on [3H]GABA release. Although monensin markedly increases Na+ permeability in synaptosomes, these data indicate that the Ca2+-independent monensin-stimulated transmitter release is not mediated by the Na+-dependent uptake pathway. It is concluded that the entrance of Na+through monensin molecules inserted in the presynaptic membrane might be sufficient to initiate the intraterminal molecular events underlying transmitter release.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Toxic peptides II-9.2.2 and II-10, purified from Centruroides noxius venom, bear highly homologous N-ter-minal amino acid sequences, and both toxins are lethal to mice. However, only toxin II-10 is active on the voltage-clamped squid axon, selectively decreasing the voltage-dependent Na+ current. Here, we have tested toxins II-9 and II-10 on synaptosomes from mouse brain: both toxins increased the release of γ-[3H]aminobutyric acid ([3H]GABA). Their effect was completely blocked by tetro-dotoxin or by the absence of external Na+. Also, both toxins increased Na+ permeability in isolated nerve terminals. Besides the observation that toxin II-9 is active on synaptosomes, the effect of toxin II-10 in this preparation is opposite to that observed in the squid axon. Thus, our results reflect functional differences between the populations of Na+ channels in mouse brain synaptosomes and in the squid axon. The release of GABA evoked by these toxins from synaptosomes required external Ca2+ and was blocked by Ca2+ channel blockers (verapamil and Co2+). This latter observation is in sharp contrast to the releasing action of veratrine, which evoked release even in the absence of external Ca2+. Furthermore, the action of both C. noxius toxins was potentiated by veratrine, a result suggesting they have different mechanisms of action. Among drugs that release neuro-transmitters by increasing Na+ permeability, it is noteworthy that scorpion toxins are the only ones yet reported to have a strict requirement for external Ca2+.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 42 (1984), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The effect of EGTA on the release of labeled γ-aminobutyric acid (GABA), glutamate, acetylcholine, and dopamine was studied in superfused synaptosomes from mouse brain. In the absence of both Ca2+ and Mg2+, EGTA and also EDTA at 50 μM or higher concentrations induced a 2.5-5-fold stimulation of [3H]GABA release, similar to that produced by potassium depolarization, whereas only a slight effect, or no effect at all, was observed on the release of the other transmitters studied. The GABA-releasing action of EGTA was practically abolished in the presence of Mg2+. In contrast, the effect of EDTA was also observed when the medium contained Mg2+. Studies on the ionic dependence showed that the stimulation of GABA release by EGTA was abolished in a Na+-free medium. Li+ did not substitute Na+ for the EGTA effect, which was also independent of chloride. This Na+ dependence does not seem to involve voltage-sensitive channels, since tetrodotoxin did not affect the GABA-releasing action of EGTA, whereas in parallel su-perfusion chambers it blocked over 80% the stimulation of GABA release by veratridine. In contrast, two calcium channel blockers in synaptosomes, La3+ and the cationic dye ruthenium red, greatly inhibited the GABA-releasing effect of EGTA. L-2,4-Diaminobutyric acid, an inhibitor of the Na+-dependent GABA carrier, did not affect the releasing action of EGTA, whereas in a parallel experiment this drug inhibited by more than 90% the exchange of labeled GABA with unlabeled GABA. It is concluded that the Na+-dependent releasing action of EGTA and EDTA on GABA is probably due to a destabilization of the synaptosomal membrane by chelation of endogenous membranal Ca2+, which can be prevented by Mg2+. Such destabilization results in Na+ influx through Ca2+ channels, and the consequent increase in the intrater-minal Na+ concentration induces the release of GABA by a mechanism probably not involving the amino acid carrier. The possible participation of mitochondrial Na+ -Ca2+ exchange is considered improbable in view of the lack of effect of EGTA on the release of other neurotrans-mitters.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Neurochemical research 20 (1995), S. 1073-1080 
    ISSN: 1573-6903
    Keywords: ω-Aga IVA ; ω-CTx MVIIC ; nitrendipine ; Cd2+ ; Ni2+ ; synaptosomes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In an attempt to further characterize the type of Ca2+ channels primarily regulating GABA exocytosis, the effects of increasing concentrations of ωCTx MVIIC,-ω-Aga IVA and other Ca2+ channel blockers (nitrendipine, Cd2+ and Ni2+), commonly used for pharmacologically discerning among the various types of Ca2+ channels, were tested on the dissected Ca2+ dependent fraction of the depolarization evoked release of GABA from mouse brain synaptosomes. Our results show that ω-CTx MVIIC inhibits GABA exocytosis with a calculated IC50 of 3 μM and ω-Aga IVA with a calculated IC50 of 50 nM. The divalent cation Cd2+ only diminishes GABA exocytosis at 70 μM, but does not modify this response at lower concentrations (i.e. 1 and 10 μM). Neither nitrendipine (10 μM) nor Ni2+ (100 μM and 500 μM) modified GABA exocytosis. The failure of nitrendipine at a high concentration to inhibit GABA exocytosis discards L-type Ca2+ channels as the main regulators of this response; likewise that of Ni2+ discards Ca2+ channels of the N-type, and the failure of nM concentrations of ω-CTx MVIIC or 500 μM Ni2+, also discards alpha1A/Q-type Ca2+ channels as the main regulators of the GABA response. On the basis of these results and in particular of the higher potency of ω-Aga IVA than ω-CTx MVIIC, it is concluded that the type of Ca2+ channels that primarily determine the exocytosis of GABA belong to a P-like type of Ca2+ channels.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Neurochemical research 24 (1999), S. 1585-1591 
    ISSN: 1573-6903
    Keywords: Neuroprotection ; presynaptic sodium ; excitatory amino acids-release ; striatum synaptosomes ; veratridine ; cyclic nucleotides ; PDE
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The effects of vinpocetine on internal Na+ (Nai), cAMP accumulation, internal Ca2+ (Cai) and excitatory amino acid neurotransmitters release, under resting and under depolarized conditions, was investigated in rat striatum synaptosomes. Veratridine (20 μM) or high K+ (30 mM) were used as depolarizing agents. Results show that vinpocetine in the low μM range inhibits the elevation of Nai, the elevation of Cai and the release of glutamate and aspartate induced by veratridine depolarization. In contrast, vinpocetine fails to inhibit the rise of Cai and the neurotransmitter release induced by high K+, which are both TTX insensitive responses. Results also show that the inhibition exerted by vinpocetine on all the above veratridine-induced responses is not reflected in PDE activity. Our interpretation of these results is that vinpocetine inhibits neurotransmitter release triggered by veratridine activation of voltage sensitive Na+ channels, but not that triggered by a direct activation of VSCC. Thus, the main mechanism involved in the neuroprotective action of vinpocetine in the CNS is unlikely to be due to a direct inhibition of Ca2+ channels or PDE enzymes, but rather the inhibition of presynaptic Na+ channel-activation unchained responses.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-6903
    Keywords: Veratridine ; high K ; GABA release ; synaptosomes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The effects of external pH (pH out) variations on the Na+ and on the Ca2+ dependent fractions of the evoked amino acid neurotransmitter release were separately investigated, using GABA as a model transmitter. In [3H]GABA loaded mouse brain synaptosomes, the external acidification (pH out6.0) markedly decreased the Na+ dependent fraction of [3H]GABA release evoked by veratridine (10 μM) in the absence of external Ca2+, as well as the Ca2+ dependent fraction of [3H]GABA release evoked by high (20 mM) K+ in the absence of external Na+. The depolarization-induced elevation of [Na i ] (monitored in synaptosomes loaded with the Na+ indicator dye, SBFI) and the depolarization-induced elevation of [Ca i ] (monitored in synaptosomes loaded with the Ca2+ indicator dye fura-2) were also markedly decreased at pH out 6. On the contrary, the external alkalinization (pH out 8) facilitated all the above responses. A slight increase of the baseline release of the [3H]GABA was observed when pH out was changed from 7.4 to 8. This effect was only observed in the presence of Ca2+. pH out changes from 7.4 to 6 or to 7 did not modify the baseline release of the transmitter. All the effects of pH out variations on [3H]GABA release were independent on the presence of HCO-3. It is concluded that external H+ regulate amino acid neurotransmitter release by their actions on presynaptic Na+ channels, as well as on presynaptic Ca2+ channels.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-6903
    Keywords: Amiloride ; verapamil ; Ca2+ channels ; Na+/Ca2+ exchanger ; homoexchange ; heteroexchange ; synaptosomes ; GABA ; TTX ; neurotransmitter release
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The Ca2+-dependent, presumably exocytotic fraction of the [3H]GABA released by depolarization is dissected from the depolarization-induced Na+-dependent, carrier-mediated fraction of [3H]GABA release in mouse brain synaptosomes. GABA homoexchange is prevented by the [3H]GABA carrier blocker, DABA. The absence of external Na+ completely abolishes the release of the carrier-mediated, presumably cytoplasmic release of [3H]GABA induced by homoexchange and heteroexchange with GABA and DABA, respectively. The carrier-mediated, Na+-dependent fraction of the depolarization-induced release of [3H]GABA is resistant to tetrodotoxin (TTX) but is sensitive to amiloride and verapamil. The Ca2+-dependent fraction of the [3H]GABA released by high K+ depolarization is also completely abolished by amiloride (from 300 μM) and sensitive to verapamil (30 μM), but in contrast is insensitive to the absence of external Na+ and to DABA. On the basis of these results we conclude that amiloride and verapamil inhibit high K+-induced release of [3H]GABA by antagonizing the entrance of Ca2+ (and possibly Na+ when external Ca2+ is absent) through a population of voltage sensitive presynaptic Ca2+ channels activated by depolarization.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Neurochemical research 20 (1995), S. 1065-1071 
    ISSN: 1573-6903
    Keywords: ω-Aga IVA ; ω-CnTx GVIA ; veratridine ; verapamil ; amiloride ; GABA exocytosis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The effect of ω-Aga IVA, a P-type Ca2+ channel blocker, on the release of the inhibitory neurotransmitter GABA and on the elevation of Cai induced by depolarization was investigated in [3H]GABA and fura-2 preloaded mouse brain synaptosomes, respectively. Two strategies (i.e. 20 mM external K+ and veratridine) that depolarize by different mechanisms the preparation were used. High K+ elevates Cai and induces [3H]GABA release in the absence of external Na+ and in the presence of TTX, conditions that abolish veratridine induced responses. The effect of ω-Aga IVA on the Ca2+ and Na+ dependent fractions of the depolarization evoked release of [3H]GABA were separately investigated in synaptosomes depolarized with high K+ in the absence of extermal Na+ and with veratridine in the absence of external Ca2+, respectively. The Ca2+ dependent fraction of the evoked release of [3H]GABA and the elevation of Ca2+ induced by high K+ are markedly inhibited (about 50%) in synaptosomes exposed to ω-Aga IVA (300 nM) for 3 min before depolarization, whereas the Na+ dependent, Ca2+ independent carrier mediated release of [3H]GABA induced by veratridine, which is sensitive to verapamil and amiloride, is not modified by ω-Aga IVA. Our results indicate that an ω-Aga IVA sensitive type of Ca2+ channel is highly involved in GABA exocytosis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...