Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-6792
    Keywords: Brain Topography ; Statistics ; Evoked Potentials ; Electroencephalography (EEG) ; Positron Emission Tomography (PET) ; Magnetic Resonance Imaging (MRI)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Statistical methods for testing differences between neural images (e.g., PET, MRI or EEG maps) are problematic because they require (1) an untenable assumption of data sphericity and (2) a high subject to electrode ratio. We propose and demonstrate an exact and distribution-free method of significance testing which avoids the sphericity assumption and may be computed for any combination of electrode and subject numbers. While this procedure is rigorously rooted in permutation test theory, it is intuitively comprehensible. The sensitivity of the permutation test to graded changes in dipole location for systematically varying levels of signal/noise ratio, intersubject variability and number of subjects was demonstrated through a simulation of 70 different conditions, generating 5,000 different data sets for each condition. Data sets were simulated from a homogenous single-shell dipole model. For noise levels commonly encountered in evoked potential studies and for situations where the number of subjects was less than the number of electrodes, the permutation test was very sensitive to a change in dipole location of less than 0.75 cm. This method is especially sensitive to localized changes that would be “washed-out‘ by more traditional methods of analysis. It is superior to all previous methods of statistical analysis for comparing topographical maps, because the test is exact, there is no assumption of a multivariate normal distribution or of the correlation structure of the data requiring correction, the test can be tailored to the specific experimental hypotheses rather than allowing the statistical tests to limit the experimental design, and there is no limitation on the number of electrodes that can be simultaneously analyzed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 2 (1981), S. 368-375 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: An approximate analytic expression is derived, based on a novel model for the reactive-diffusive processes in a electrochemiluminescence (ecl) experiment. The physical system treated is one in which ecl is produced by stepping the voltage of a planar electrode to the diffusion-limited reduction value for an emitter species in the presence of a bulk oxidant precursor (9,10-DPA with benzoyl peroxide). The unknown rate constants are determined by a least-squares curve-fitting computer code. The model, though crude, provides an excellent fit to the ecl intensity versus time data, including the rise portion of the curve.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...