Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 94 (1991), S. 551-555 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A number of existing approximants are reviewed and tested for the equation of state of the hard spheres fluid in the metastable fluid region, namely, at densities higher than the normal freezing density: ρ*=0.943. This is a region which is particularly sensitive to the quality of a given equation of state; however, it is frequently ignored in the study of analytical equations of state. A new set of approximants is also discussed, including as particular cases several other currently used equations of state for the hard spheres fluid.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 99 (1993), S. 548-552 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Equations of state for hard-disk and hard-sphere fluids are obtained from a generalization of the Carnahan–Starling method of direct summation of the virial series. The equations of state thus obtained, besides reproducing all known virial coefficients, agree very accurately with simulation data for stable fluids. If appropriate values for the sixth and seventh virial coefficients are chosen within their uncertainty, the equations of state predict that the fluids become unstable at Kauzmann's density.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 98 (1993), S. 5788-5792 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: An equation of state for the inverse-twelfth-power soft-sphere fluid is obtained by direct summation of the virial series. To do so, a generalization of the Carnahan–Starling method for obtaining the equation of state of the hard-sphere fluid is used. The equation of state obtained in this way reproduces accurately the simulation data for both the stable and metastable fluid regions. Agreement remains good up to the neighborhood of the glass transition where the equation of state predicts that the soft-sphere fluid becomes unstable.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 102 (1995), S. 8562-8568 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A model relating the equation of state of two-dimensional linear hard-body fluids to the equation of state of the hard disk fluid is derived from the pressure equation in a similar way to that previously described for three-dimensional hard-body fluids. The equation of state reproduces simulation data practically within their accuracy for fluids with a great variety of molecular shapes. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 101 (1994), S. 9864-9868 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A model relating the equation of state of linear homonuclear fused hard sphere fluids to the equation of state of the hard sphere fluid is derived from the pressure equation. The equation of state reproduces simulation data practically within their accuracy for diatomic and linear triatomic hard molecular fluids. © 1994 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 104 (1996), S. 4728-4735 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A model previously developed for the equation of state of linear homonuclear fused hard sphere fluids is generalized to fluids with heteronuclear molecules. The model only requires two parameters, which can be determined from the geometrical characteristics of the molecules, for which analytical expressions are derived. Results for fluids with heteronuclear hard diatomic and symmetric triatomic molecules agree with simulation data within their accuracy for almost all the fluids considered. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 100 (1994), S. 3142-3148 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A simple and accurate equation of state for fluids of hard convex molecules is derived from the pressure equation and the equation of state of the hard sphere fluid. The equation of state provides theoretical support to some equations of state used in perturbation theories for real molecular liquids. The equation of state reproduces the simulation data with an accuracy comparable to that derived from density functional theory.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 113 (2000), S. 10180-10185 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A number of consistency conditions for the contact values gij(σij) of the pair correlation function of species i and j in an additive hard-sphere fluid mixture are discussed. It is shown that most of the theoretically-based expressions, as well as other more empirical in character, existing for these functions, fail to satisfy at least one of the conditions. It is suggested that one could improve the performance of the expressions for gij(σij) and the equation of state by using the consistency conditions. This is illustrated by modifying the Boublík–Mansoori–Carnahan–Starling–Leland expressions for gij(σij), which results in better predictions for these functions as well as for the compressibility factor and the fourth and fifth virial coefficients. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 111 (1999), S. 4640-4649 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A theoretically founded equation of state is developed for mixtures of hard spheres with heteronuclear hard dumbbells. It is based on a model previously developed for hard-convex-body fluid mixtures, and further extended to fluid mixtures of homonuclear hard dumbbells. The equation scales the excess compressibility factor for an equivalent hard-sphere fluid mixture to obtain that corresponding to the true mixture. The equivalent mixture is one in which the averaged volume of a sphere is the same as the effective molecular volume of a molecule in the real mixture. Thus, the theory requires two parameters, namely the averaged effective molecular volume of the molecules in the mixture and the scaling factor, which is the effective nonsphericity parameter. Expressions to determine these parameters are derived in terms of the geometrical characteristics of the molecules that form the mixture. The overall results are in closer agreement with simulation data than those obtained with other theories developed for these kinds of mixtures. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 117 (2002), S. 2451-2451 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...