Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Plant pathology 50 (2001), S. 0 
    ISSN: 1365-3059
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: To further the understanding of the natural genetic diversity for disease resistance to powdery mildew (Erysiphe cichoracearum) in Arabidopsis thaliana, quantitative trait loci analysis was undertaken on recombinant inbred lines derived from a cross between the resistant accession Warschau-1 and the susceptible Columbia-0. Powdery mildew grew less well on Warschau-1, but the resistance was not associated with a specific block in the infection sequence. Two potential powdery mildew disease-resistance loci were identified and mapped, one with a major effect and one with a minor effect on disease resistance. The two loci acted in an additive manner to confer resistance, and together they explained 65% of the variation in resistance. In addition, the major powdery mildew disease-resistance locus was genetically mapped to the bottom of chromosome III, a region containing the powdery mildew resistance loci RPW7, RPW8 and RPW10. Unlike resistance mediated by the RPW8 locus in the accession Moscow-1, resistance in Warschau-1 was not correlated with the hypersensitive response, highlighting the influence of genetic background or environmental factors on the expression of disease resistance. Together with the powdery mildew resistance loci described in other studies, these results suggest that A. thaliana is a useful source of natural powdery mildew disease resistance, which potentially can be utilized in fundamental studies and as a tool for applied studies.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1615-6102
    Keywords: Blumeria graminis ; Extensin ; Extracellular protein ; Haustorium ; High pressure/low temperature freezing ; Plant-pathogen interaction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Immunoelectron microscopy was used to determine the subcellular distribution of threonine-hydroxyproline-rich glycoprotein (THRGP) epitopes in host-parasite interactions between obligate, biotrophic fungi and cereals. Infection sites of stem rust (Puccinia graminis f. sp.tritici) and leaf rust (Puccinia recondita) on primary leaves of wheat (Triticum aestivum), as well as of powdery mildew (Erysiphe graminis f. sp.hordei) on coleoptiles of barley (Hordeum vulgare), wete probed with a polyclonal antiserum to maize THRGP. A few immunogold particles were found over the cell walls of wheat mesophyll tissue and barley coleoptile epidermis. Unlike previous examples in dicot plants, no enhanced accumulation of THRGP was observed in cereal cell walls adjacent to sites of pathogen ingress. Instead, the most pronounced accumulation of THRGP-like molecules occurred over the extrahaustorial matrix in both incompatible and compatible plant-pathogen interactions. For powdery mildew of barley, immunogold staining was distinctly increased over the center of the penetration sites; however, no labeling was found over papillae that formed during incompatible and compatible interactions. In addition, no cross-reactivity of the anti-THRGP antiserum with intercellularly growing rust pathogens was observed. The highly localized deposition of THRGP-like molecules in the extrahaustorial matrix suggests that the host plant establishes a modified barrier between itself and the pathogen.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1615-6102
    Keywords: Erysiphe graminis (=Blumeria graminis) ; Freeze substitution ; Hypersensitive resistance ; Lowicryl embedding, Mitochondria ; Papillae ; Propane jet freezer ; Ultrarapid freezing
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary In the powdery mildew disease of barley,Erysiphe graminis f. sp.hordei forms an intimate relationship with compatible hosts, in which haustoria form in epidermal cells with no obvious detrimental effects on the host until late in the infection sequence. In incompatible interactions, by contrast, the deposition of papillae and localized host cell death have been correlated with the cessation of growth byE. g. hordei. With the advent of improved, low temperature methods of sample preparation, we felt that it was useful to reevaluate the structural details of interactions between barley andE. g. hordei by transmission electron microscopy. The haustoria that develop in susceptible barley lines appear highly metabolically active based on the occurrrence of abundant endoplasmic reticulum, Golgi-like cisternae, and vesicles. In comparison, haustoria found in the resistant barley line exhibited varying signs of degradation. A striking clearing of the matrix and loss of cristae were typical early changes in the haustorial mitochondria in incompatible interactions. The absence of distinct endoplasmic reticulum and Golgi-like cisternae, the formation of vacuoles, and the occurrence of a distended sheath were characteristic of intermediate stages of haustorial degeneration. At more advanced stages of degeneration, haustoria were dominated by large vacuoles containing membrane fragments. This process of degeneration was not observed in haustoria ofE. g. hordei developing in the susceptible barley line.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...