Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: In addition to being initially developed as an energy driver for an inertial confinement fusion, an intense, pulsed, light-ion beam (LIB) has been found to be applied to materials science. If a LIB is used to irradiate targets, a high-density "ablation'' plasma is produced near the surface since the range of the LIB in materials is very short. Since the first demonstration of quick preparation of thin films of ZnS by an intense, pulsed, ion-beam evaporation (IBE) using the LIB-produced ablation plasma, various thin films have been successfully prepared, such as of ZnS:Mn, YBaCuO, BaTiO3, cubic BN, SiC, ZrO2, ITO, B, C, and apatite. Some of these data will be presented in this paper, with its analytic solution derived from a one-dimensional, hydrodynamic, adiabatic expansion model for the IBE. The temperature will be deduced using ion-flux signals measured by a biased ion collector. Reasonable agreement is obtained between the experiment and the simulation. High-energy LIB implantation to make chemical compounds and the associated surface modification are also discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 69 (1996), S. 2193-2195 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Barium titanate (BaTiO3) thin films were successfully prepared in situ on Al/SiO2/Si(100) substrates by backside deposition from intense, pulsed, ion-beam evaporation using a 1.3 MeV, 50 ns, 25 J/cm2 ion beam. Good morphology of the films prepared was observed, where no droplets appear compared to normal frontal-side deposition. The deposition rates were typically 100 nm/shot. The films were perovskite polycrystals. The capacitance of the thin films (at 1 kHz) increased from 3 to 10 nF/mm2 with increasing substrate temperature from 25 to 250 °C, respectively. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...