Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Thin nickel films with thicknesses ranging from 30 to 150 nm were deposited via radio frequency (rf) magnetron sputtering. The influence of argon pressure, film thickness, rf input power, and deposition rate on the magnetic, crystalline, and electrical properties of the films was evaluated. Depending on deposition conditions, film coercivity could be varied from 2 to 290 Oe while saturation magnetization could be varied from 280 to 500 emu/cm3. Higher argon pressures produced lower coercivity films. The films exhibited a dominant fcc(111) orientation. Lower argon pressures and higher rf input powers increased nickel grain sizes. Classical models based on domain wall energy considerations and film microstructure are used to intrepret the observed experimental results.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of low temperature physics 60 (1985), S. 437-456 
    ISSN: 1573-7357
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Symmetric tunneling junctions with 4000-Å-thick Pb electrodes and polycrystalline insulating barriers of Lu(OH)3, Er(OH)3, and Ho(OH)3 have been fabricated. In bulk, these three rare earth trihydroxides are nonmagnetic, antiferromagnetic (T N〈1.1 K), and ferromagnetic (Tc=2.54 K), respectively. Tunneling resistances ranged from 600 to greater than 40,000 Ω with a junction area of 6.25×10−2 cm2. Single-particle tunneling characteristics of these junctions were always broadened relative to the characteristics of Pb-PbO-Pb junctions, although the ratio of the zero-bias tunneling resistance to the normal tunneling resistance in some instances was of the order of 1000. A threefold splitting of the conductance peak at the gap was observed only in junctions with Ho(OH)3 barriers. The gap peak of junctions with Er(OH)3 barriers was broadened significantly relative to that of junctions with Lu(OH)3 barriers. From measurements of the temperature and magnetic field dependences of the tunneling conductance it is argued that the splitting in junctions with Ho(OH)3 barriers is consistent with the existence of a peak in the electronic density of states at an energy below that of the gap of each of the electrodes. This peak is believed to be the signature of a bound state near the barrier where the pair potential is depressed by virtue of the exchange coupling between the spins of the superconducting electrons and the localized spins of the barrier. Qualitative interpretations of the data support the view that the observed structure in Ho(OH)3 barrier junctions is neither a consequence of intrinsic gap anisotropy in Pb nor of inelastic magnon-assisted tunnelling.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...