Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 67 (1996), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The brain is a rich source of the lipid biomediator lysophosphatidic acid, and lysophosphatidic acid levels can significantly increase following brain trauma. Responses of primary rat brain astrocytes to this novel lipid are defined in the current study. Treatment of cells with lysophosphatidic acid resulted in a time- and dose-dependent inhibition of glutamate uptake. Inhibition of glutamate uptake was specific because the related phospholipids, phosphatidic acid, lysophosphatidylcholine, and lysophosphatidylglycerol, did not inhibit this uptake under comparable conditions, i.e., treatment with 10 µM lipid for 30 min. Lysophosphatidic acid treatment of cells resulted in an increase in lipid peroxidation, as measured by the thiobarbituric acid assay. This increase in content of thiobarbituric acid-reactive substances was largely inhibited by treatment with dithiothreitol or propyl gallate; however, such treatment did not affect the lysophosphatidic acid-induced inhibition of glutamate uptake. Lysophosphatidic acid also inhibited glucose uptake with a dose-response curve that paralleled the inhibition of glutamate uptake. By impairing uptake of glutamate by astrocytes, lysophosphatidic acid may exacerbate excitotoxic processes in various neurodegenerative conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 69 (1997), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Lysophosphatidic acid (LPA) is a potent lipid biomediator that is likely to have diverse roles in the brain. Thus, LPA-induced events in astrocytes were defined. As little as 1 nM LPA induced a rapid increase in the concentration of intracellular free calcium ([Ca2+]i) in astrocytes from neonatal rat brains. This increase was followed by a slow return to the basal level. Intracellular calcium stores were important for the initial rise in [Ca2+]i, whereas the influx of extracellular calcium contributed significantly to the extended elevation of [Ca2+]i. LPA treatment also resulted in increases in lipid peroxidation and DNA synthesis. These increases in [Ca2+]i, lipid peroxidation, and DNA synthesis were inhibited by pretreatment of cells with pertussis toxin or H7, a serine/threonine protein kinase inhibitor. Moreover, the LPA-induced increase in [Ca2+]i was inhibited by a protein kinase C inhibitor, Ro 31-8220, and a calcium-dependent protein kinase C inhibitor, Gö 6976. The increase in [Ca2+]i was important for the LPA-induced increase in lipid peroxidation, whereas the antioxidant, propyl gallate, inhibited the LPA-stimulated increases in lipid peroxidation and DNA synthesis. In contrast, pertussis toxin, H7, and propyl gallate had no effect on LPA-induced inhibition of glutamate uptake. Thus, LPA appears to signal via at least two distinctive mechanisms in astrocytes. One is a novel pathway, namely, activation of a pertussis toxin-sensitive G protein and participation of a protein kinase, leading to sequential increases in [Ca2+]i, lipid peroxidation, and DNA synthesis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: A diverse body of evidence indicates a role for the lipid biomediator lysophosphatidic acid (LPA) in the CNS. This study identifies and characterizes the induction of neuronal death by LPA. Treatment of cultured hippocampal neurons from embryonic rat brains with 50 µM LPA resulted in neuronal necrosis, as determined morphologically and by the release of lactate dehydrogenase. A concentration of LPA as low as 10 µM led to the release of lactate dehydrogenase. In contrast, treatment of neurons with 0.1 or 1.0 µM LPA resulted in apoptosis, as determined by chromatin condensation. In addition, neuronal death induced by 1 µM LPA was characterized as apoptotic on the basis of terminal dUTP nick end-labeling (TUNEL) staining, externalization of phosphatidylserine, and protection against chromatin condensation, TUNEL staining, and phosphatidylserine externalization by treatment with N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone, a broad-spectrum inhibitor of caspases, i.e., members of the interleukin-1β converting enzyme family. Studies with antagonists of ionotropic glutamate receptors did not indicate a significant role for these receptors in apoptosis induced by 1 µM LPA. LPA (1 µM) also induced a decrease in mitochondrial membrane potential. Moreover, pretreatment of neurons with cyclosporin A protected against the LPA-induced decrease in mitochondrial membrane potential and neuronal apoptosis. Thus, LPA, at pathophysiological levels, can induce neuronal apoptosis and could thereby participate in neurodegenerative disorders.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Lysophosphatidic acid (LPA) is a lipid biomediator enriched in the brain. A novel LPA-induced response in rat hippocampal neurons is described herein, namely, a rapid and sustained elevation in the concentration of free intracellular calcium ([Ca2+]i). This increase is specific, in that the related lipids phosphatidic acid and lysophosphatidylcholine did not induce an alteration in [Ca2+]i. Moreover, consistent with a receptor-mediated process, there was no further increase in [Ca2+]i after a second addition of LPA. The LPA-induced increase in [Ca2+]i required extracellular calcium. However, studies with Cd2+, Ni2+, and nifedipine and nystatin-perforated patch clamp analyses did not indicate involvement of voltage-gated calcium channels in the LPA-induced response. In contrast, glutamate appears to have a significant role in the LPA-induced increase in [Ca2+]i, because this increase was inhibited by NMDA receptor antagonists and α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)/kainate receptor antagonists. Thus, LPA treatment may result in an increased extracellular glutamate concentration that could stimulate AMPA/kainate receptors and thereby alleviate the Mg2+ block of the NMDA receptors and lead to glutamate stimulation of an influx of calcium via NMDA receptors.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] TABLE 1 Incorporation of 14C-fucose into glycolipids of normal (NRK), NRK (MSV-lb) at non-permissive and permissive temperatures, and transformed NRK (MSV-MLV) cell lines 1 2 3 4 NRK NRK (MSV-lb) at 33C NRK (MSV-lb) at 39C NRK (MSV-MLV) (normal) (non-permissive) (permissive) (transformed) ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 141 (1989), S. 142-147 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: A differentiation-defective mouse myoblast subclone (DD-1), cells of which do not fuse into myotubes nor synthesize muslce-specific proteins, was employed to help define the role of eicosanoids in mouse myoblast differentiation. We observed by hplc, tIc, and radioimmunoassay that the DD-1 cells release strikingly higher levels of cyclooxygenase pathway products prostaglandin E2 and F2α into the culture medium than the parental non-differentiation-defective cells (DZ). In contrast, the levels of 15-hydroxyeicosatetraenoic acid (15-HETE), a lipoxygenase product, and a putatively identified second lipoxygenase product (LLP) did not differ greatly in the two cell types. The DD-1 cells also have strikingly higher levels of cyclooxygenase activity than the parental cells as determined by intact and broken cell assays. Additional fusion-defective clones were isolated on the basis of their flattened appearance and ability to grow in “mitogen-poor” medium and these cells also released strikingly higher levels of prostaglandins E2 and F2α into the growth medium. The “turn on” of the cyclooxygenase pathway in the DD-1 cells and other fusion-defective cells is consistent with the hypothesis that the products of this pathway contribute to the inability of myoblasts to fuse with one another. This hypothesis is supported by the observation that there is a dose-dependent decrease in fusion of DZ cells when PGE2 is added to commitment medium.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...