Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 92 (1990), S. 2848-2861 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A detailed re-investigation of the (0,0) and 211 bands of the A˜ 2Πu–X˜ 2Πg transition of 11BO2, near 545 nm, has been carried out from spectra taken at sub-Doppler resolution. Avoided crossings are found to occur between the 2Σ and 2Δ vibronic components of the v2=1 level of the A˜ 2Πu state. These perturbations are the first known examples of K-resonance crossings, which result from an interplay of the electronic Λ-type doubling and the vibrational l-type doubling in a state where the electrostatic parameter ε is small. It turns out that perturbations of this type must always occur in a 2Π electronic state if the ratio A/εω2 is large enough, but have not been seen until now for lack of suitable data. Their existence allows an unusually complete description of the orbital angular momentum effects in both the A˜ 2Πu and X˜ 2Πg states. It has been necessary to fit the avoided crossings by a full matrix treatment of the K resonance. In addition the A˜ 2Πu state, although it appears to be unperturbed at lower resolution, shows an astonishing number of very small random rotational perturbations. These arise from vibronic coupling between the A˜ 2Πu and X˜ 2Πg states of BO2 through the ν3 vibration, which has species σ+u; their presence is consistent with the explanation given by Kawaguchi et al. [Mol. Phys. 44, 509 (1981)] for the sizable negative anharmonicity of the ground state ν3 vibration. About 20% of the available ground state energy levels at 18 300 cm−1 appear to be active in causing level shifts and splittings in the A˜ 2Πu state. The matrix elements are quite small, ranging up to about 600 MHz, but the great number of perturbations indicates the onset of chaotic behavior.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 60 (1989), S. 1003-1007 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: A method for calibrating high-resolution laser spectra in the visible is described. The system is based on an evacuated Fabry–Perot étalon whose cavity length is servolocked to a stabilized HeNe laser; the absolute order number of the fringe at the HeNe frequency is known and the free spectral range can be determined with high accuracy. For absolute-frequency measurements the order number of a transmission fringe is obtained from a commercial wavemeter (whose accuracy is sufficient to identify the fringe); the absolute frequency is then the HeNe frequency multiplied by the ratio of the "unknown'' order number to the "lock-point'' order number. The long-term frequency reproducibility of the system is better than 25 MHz. Small-frequency splittings such as molecular hyperfine intervals can be measured to ±1 MHz, while large-frequency intervals (of the order of 500 GHz) are consistent to better than 10 MHz.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...