Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The Ash1 protein is a daughter cell-specific repressor of HO gene transcription in Saccharomyces cerevisiae. Both ASH1 mRNA and protein are localized to the incipient daughter cell at the end of mitosis; Ash1 then inhibits HO transcription in the daughter cell after cytokinesis. Mother cells, in contrast, contain little or no Ash1 and thus are able to transcribe HO. We show that deletion of PHO85, which encodes a cyclin-dependent protein kinase, causes reduced transcription of HO and that this reduction is dependent on ASH1. In pho85 mutants, Ash1 protein is no longer asymmetrically localized and is present, instead, in both mother and daughter cells. Initially, it appears to be localized properly but then persists as daughter cells mature into mother cells. In contrast, ASH1 mRNA is localized appropriately to daughter cells in pho85 mutants. We observe that Ash1 protein is phosphorylated by Pho85 in vitro and that Ash1 stability increases in a pho85 mutant. These data suggest that phosphorylation of Ash1 by Pho85 governs stability of Ash1 protein.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1617-4623
    Keywords: SIN3 protein ; SIN3 protein ; GAL4 ; HAP1 ; Gene regulation ; Transcription
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The activation of gene transcription in eukaryotic organisms is regulated by sequence-specific DNA-binding proteins as well as by non-DNA-binding proteins. In this report we describe the modulatory functions of a non-DNA-binding protein, SIN3 (also known as SDI1, UME4, RPD1, and GAM2) on the transactivation properties of the human progesterone receptor (hPR), GAL4, and the HAPl activator in yeast. Our data suggest that SIN3 is a dual function protein. It negatively regulates the transcriptional activities of hPR-A and hPR-B by affecting the N-terminal activation domain (AFI). SIN3 positively regulates the transcriptional activities of GAL4 and the HAP1 activator. However, it has no effect on the transcriptional activities of the human glucocorticoid receptor (hGR) and GCN4. The SIN3 protein contains four copies of a paired amphipathic helix (PAH) motif. Deletion analysis of the SIN3 PAH motifs shows that the PAH3 motif is essential for SIN3-mediated regulation of hPR, GAL4, and the HAPI activator. In constrast, the PAH 1, PAH2, and PAH4 motifs are not required for SIN3-mediated regulation of these activators. Additionally, we examined the mechanism(s) by which the SIN3 protein modulate the activities of various activators. We are unable to demonstrate the direct interaction of SIN3 protein with these activators using the yeast two-hybrid system or co-immunoprecipitation. These data suggest that SIN3 regulates the transactivation functions of hPR, GAL4, and the HAP1 activator by an indirect mechanism.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0749-503X
    Keywords: Isoprene ; chromosome ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Isopontenyl diphosphate isomerase catalyses an essential activation step in the isoprene biosynthetic pathwasy. The Saccharomyces cerevisiae gene for isomerase, IDI1, was recently isolated and characterized (Anderson et al. J. Biol. Chem. 1989aa, 264, 19169-19175). Wild-type IDI1 was disrupted with a LEU2 marker, and the resulting DNA was used to transform a yeast leucine auxotroph. Southern blots of EcoRI fragments of chromosomal DNA from the diploid strain showed the expected fragments for intact and disrupted IDI1. Dissection and analysis of tetrads demonstrated that IDI1 is an essential single-copy gene. A CHEF gel and clone grid filter analysis, followed by chromosomal mapping indicated that the gene is located on chromosome that the gene is located on the chromosome XVI approximately 55 kb contromere proximal to PEP4.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...