Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Neuroscience 24 (2001), S. 263-297 
    ISSN: 0147-006X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract We examine early olfactory processing in the vertebrate and insect olfactory systems, using a computational perspective. What transformations occur between the first and second olfactory processing stages? What are the causes and consequences of these transformations? To answer these questions, we focus on the functions of olfactory circuit structure and on the role of time in odor-evoked integrative processes. We argue that early olfactory relays are active and dynamical networks, whose actions change the format of odor-related information in very specific ways, so as to refine stimulus identification. Finally, we introduce a new theoretical framework ("winnerless competition") for the interpretation of these data.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillian Magazines Ltd.
    Nature 402 (1999), S. 664-668 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Neural assemblies in a number of animal species display self-organized, synchronized oscillations in response to sensory stimuli in a variety of brain areas.. In the olfactory system of insects, odour-evoked oscillatory synchronization of antennal lobe projection neurons (PNs) is ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillan Magazines Ltd.
    Nature 390 (1997), S. 70-74 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Stimulus-evoked oscillatory synchronization of neural assemblies has been described in the olfactory and visual systems of several vertebrates and invertebrates. In locusts, information about odour identity is contained in the timing of action potentials in an oscillatory population ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Entomologia experimentalis et applicata 91 (1999), S. 7-18 
    ISSN: 1570-7458
    Keywords: oscillations ; coding ; olfaction ; locust ; honey bee
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Stimulus evoked oscillatory synchronization of neural assemblies has been most clearly documented in the olfactory and visual systems. Recent results with the olfactory system of locusts show that information about odour identity is contained in spatial and temporal aspects of an oscillatory population response. This suggests that brain oscillations may reflect a common reference for messages encoded in time. Although stimulus-evoked oscillatory phenomena are reliable, their roles in perception, memory and pattern recognition remain to be demonstrated. Using honey bees, we demonstrated that odour encoding involves, as in locusts, the oscillatory synchronization of assemblies of neurons, and that this synchronization is, here also, selectively abolished by the GABA receptor antagonist picrotoxin. In collaboration with Dr Brian Smith's laboratory, we showed, using a behavioural learning paradigm, that picrotoxin-induced desynchronization impairs the discrimination of molecularly similar odourants, but not that of dissimilar odours. It appears, therefore, that oscillatory synchronization of neuronal assemblies is relevant, and essential for fine odour discrimination. Finally, experiments with locust mushroom body neurons, two synapses downstream from the antennal lobe, indicate that their responses to odours become less specific when antennal lobe neurons are desynchronized by picrotoxin injection. These results suggest that oscillatory synchronization and the kind of temporal encoding it affords provide an additional dimension by which the brain can segment spatially overlapping stimulus representations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...