Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 33 (1993), S. 1341-1351 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: This paper reports on the theoretical and experimental studies of structure formation and strengthening (stiffening) of flexible-chain polymers. Two techniques of strengthening relying on the melt extrusion, i.e., orientational crystallization (crystallization initiated by melt extension) and drawing (uniaxial stretching of a crystallized polymer) are analysed by theory. The experiments involved preparation and study of melt extruded films and film fibers of linear polyethylene formed by the two techniques mentioned above. The effect of the degree of orientation and other parameters of the formation processes on the mechanical characteristics and the factors limiting the ultimate values of these characteristics are discussed. It is shown that multistage drawing succeeds in achieving a higher tensile strength and elastic modulus (1.2 and 35 GPa, respectively) than the orientational crystallization, which gives 0.8 and 15 GPa. The strengthening by drawing is accompanied by microcrack formation. In contrast, no discontinuities are observed in orientationally crystallized samples up to their ultimate extension.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...