Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0630
    Keywords: PACS: 78.20.Ci; 78.66.Jg
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: 40 S40Se20, deposited by thermal evaporation, were obtained in the 400 nm to 2200 nm spectral region. The optical constants of this amorphous material were computed using an optical characterization method based mainly on the ideas of Minkov and Swanepoel of utilising the upper and lower envelopes of the spectrum, which allows us to obtain both the real and imaginary parts of the complex refractive index, and the film thickness. Thickness measurements made by a surface-profiling stylus have been carried out to cross-check the results obtained by the optical method. The dispersion of the refractive index is discussed in terms of the single-oscillator Wemple–DiDomenico model. The optical band gap has been determined from absorption coefficient data by Tauc’s procedure. Finally, the photo-induced and thermally induced changes in the optical properties of a-As40S40Se20 thin films were also studied, using both transmission and reflection spectra.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Thermal properties of chalcogenide AsxS100−x glasses in the glass transition region have been studied by modulated-temperature differential scanning calorimetry (MTDSC). All samples in this work were given the same thermal history by heating to a temperature above the glass transition, equilibrating and then cooling at a rate of 5°C/min to a temperature of 20°C. The reversing and non-reversing heat flows through the glass transformation region during both heating and cooling schedules were measured and the values of the parameters Tg, ΔH, Cp and ΔCp, which characterize the thermal events in the glass transition region, were determined as a function of the glass composition. The structurally determined parameters Tg, ΔH, Cp and ΔCp reveal major extrema when the composition of AsxS100−x glass becomes As40S60, that is the same as the composition of the corresponding stoichiometric compound. In addition, we observe “small thresholds” in these properties at 28.5 at % As (As28.5S71.5) around the same composition as that reported in the As-Se glasses. No such thermal analysis had been done on the AsxS100−x glasses previously. It is shown that AsxS100−x glasses where x 〈 25 at % As are formed from two glass phases. From MTDSC measurements, it was possible to establish the probable composition of the high temperature glass phase and from Raman spectroscopy it was possible to correlate the MTDSC results with the structure of the As-S glasses.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...