Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: We have isolated and characterized a genomic clone encoding Scots pine (Pinus sylvestris) cytosolic glutamine synthetase (GS). The clone contains the 5′ end half of the gene including part of the coding region and 980 bp upstream of the translation initiation codon. The major transcription start site (+1) was mapped around 180 nucleotides upstream of the translation initiation codon. Sequence analysis of the 5′-upstream region of the gene reveals the presence of putative regulatory elements including a poly-CT consensus sequence, a purine-rich tandem repeat and two AT-rich regions. Fusions of the upstream gene region to uidA were shown to be transiently expressed in the cotyledons of germinating pine seeds transformed by microprojectile bombardment. Stable transformation of Arabidopsis thaliana revealed the shoot apical meristem as the major region of heterologous permanent expression in Arabidopsis, in agreement with the expression of the GS gene in Pinus. Moreover, quantitative data derived from fluorometric β-glucuronidase assays in control and continuous light-grown transgenic Arabidopsis plants indicate that the isolated upstream region of the gene contains regulatory sequences involved in the response to light.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5028
    Keywords: gene regulation ; glutamine synthetase ; light ; Pinus ; seedling growth
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The expression of a cytosolic glutamine synthetase (GS1; EC 6.3.1.2) gene was examined in cotyledons of Scots pine seedlings. Light strongly stimulated GS1 mRNA accumulation during development. Similarly, steady-state levels of GS1 transcripts increased in dark-grown seedlings transferred to light and decreased in dark-adapted seedlings. Light/dark adaptation affected rbcS and lhcb2 mRNA levels and chlorophyll contents in the same manner. Light-grown seedlings in the presence of the herbicide norflurazon showed a drastic decrease in mRNA for GS and photosynthetic proteins, whereas the effect of the herbicide on mitochondrial β-ATP synthase mRNA was limited. These results indicate that factors associated with developing chloroplasts could be required for maximal GS1 gene expression during seedling development. The level of GS polypeptide, determined by immunoblot, was up-regulated during seedling development in the light or dark. However, the levels of the polypeptide detected were unaltered by the light/dark adaptation treatments. The analysis of GS1 mRNA association with polysomes indicated that the discrepancies between GS protein and mRNA levels are not a result of a differential translational rate of the transcript in darkness relative to light. Two GS isoproteins with different isoelectric point were resolved by two-dimensional PAGE in light- and dark-germinated plants. The relative abundance of one of them was markedly affected by light and correlated with the observed changes in GS mRNA, suggesting that the other form is not a product derived from the detected transcript. In situ hybridization of cotyledon sections showed the presence of GS1 mRNAs in mesophyll and phloem cells confirming gene expression in photosynthetic tissues. High levels of transcript were detected also in meristematic cells of apical primordia. These data suggest a dual role for the GS1 gene associated with chloroplast development/activity and glutamine biosynthesis for nitrogen mobilization during early growth of Scots pine.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...