Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-203X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Maize Type II callus tissue was used as the plant material for genetic transformation via electroporation. Plasmid DNA containing a selectable marker gene (either neomycin phosphotransferase (npt-II) or phosphinothricin acetyl transferase (bar)), and a screenable marker gene (gus A) was incubated with the tissue prior to electroporation. Electroporated callus tissue was placed on selection medium containing kanamycin sulfate or Bast™. No kanamycin resistant colonies were recovered whereas four independent Basta™ resistant callus isolates were recovered from a total of 544 cuvettes electroporated. After 8 to 16 weeks on the Basta™ containing medium, selected calli were isolated and maintained in individual selection plates for 4 to 6 weeks until sufficient tissue accumulated. Enzyme assays and DNA analyses were performed to verify the transformation events. Several plants were regenerated from individual callus isolates. The plants derived from one callus isolate were male sterile while those derived from the other isolates were both male and female fertile. Most plants showed Basta™ resistance. DNA analyses confirmed the presence of the introduced bar gene(s) in the primary regenerants and their progeny. The integration patterns of the inserted DNA appeared to be complex.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-203X
    Keywords: Zea mays L ; microspore-derived cultures ; haploid ; regeneration ; transformation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Transgenic haploid maize (Zea mays L.) plants were obtained from protoplasts isolated from microspore-derived cell suspension cultures. Protoplasts were electroporated in the presence of plasmid DNA containing the gus A and npt II genes encoding ß-glucuronidase (GUS) and neomycin phosphotransferase II (NPT II), respectively. Transformed calli were selected and continuously maintained on kanamycin containing medium. Stable transformation was confirmed by enzyme assays and DNA. analysis. Stably transformed tissue was transferred to regeneration medium and several plants were obtained. Most plants showed NPT II activity, and some also showed GUS activity. Chromosome examinations performed on representative plants showed that they were haploid. As expected, these plants were infertile.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2242
    Keywords: Lycopersicon esculentum ; Transformation ; Hairy-root ; A. tumefaciens ; A. rhizogenes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Cultivated tomato was genetically transformed using two procedures. In the first procedure, punctured cotyledons were infected with “disarmed” Agrobacterium tumefaciens strain LBA4404 or with A. rhizogenes strain A4, each containing the binary vector pARC8. The chimeric neomycin phosphotransferase (NPT II) gene on pARC8 conferred on transformed plant cells the ability to grow on medium containing kanamycin. Transformation reproducible yielded kanamycin-resistant transformants in different tomato genotypes. NPT II activity was detected in transformed calli and in transgenic plants. All of these plants were phenotypically normal, fertile and set seeds. Using the second procedure, inverted cotyledons, we recovered transformed tomato plants from A. rhizogenes-induced hairy roots. In this case, all of the transgenic plants exhibited phenotypes similar to hairy root-derived plants reported for other species. Southern blot analysis on these plants revealed that the plant DNA hybridized with both probes representing pARC8-T-DNA, and the T-DNAs of the A4 Ri-plasmid. However, southern analysis on those phenotypically normal transgenic plants from the first procedure revealed that only the pARC8-T-DNA was present in the plant genome, thus indicating that the pARC8-T-DNA integrated into the plant genome independently of the pRi A4-T-DNA. Genetic analysis of these phenotypically normal transgenic plants for the kanamycin-resistance trait showed Mendelian ratios, 3∶1 and 1∶1, for selfed (R1) and in crossed progeny, respectively.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...