Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of food science 69 (2004), S. 0 
    ISSN: 1750-3841
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Process Engineering, Biotechnology, Nutrition Technology
    Notes: : Effect of gamma-irradiation on color, pungency, and volatiles of Korean red pepper powder (Capsicum annuum L.) was investigated. Red pepper powder, vacuum-packaged in a polyethylene/polypropylene bag, was gamma-irradiated up to 7 kGy. An irradiation dose of 7 kGy reduced the population of mesophilic bacteria and fungi effectively without affecting major quality factors. Pungency of irradiated red pepper powder was not changed based on the amount of capsanoids by high-performance liquid chromatography (HPLC) and the Scoville sensory score. The red color of irradiated pepper powder was not significantly different from that of the control, judged from the capsanthin content by HPLC and color assessment using spectrophotpmetric (American Spice Trade Assn. units) and colorimetric measurements (Hunter a values). Further, the sensory evaluation showed no significant difference in pungent odor and off-odor between nonirradiated control and irradiated red pepper powder. However, when headspace volatiles of gamma-irradiated red pepper powder were evaluated by gas chromatography/ mass spectrometry with solid-phase microextraction and electronic nose with metal oxide sensors, the profiles of odor were classified into irradiated dose levels of 0, 3, 5, and 7 kGy by principal component analysis and multivariate analysis of variance. Such a difference of odor might result from the disappearance of some volatiles, such as hexanoic acid and tetramethyl-pyrazine, and the appearance of 1,3-di-tert-butylbenzene during irradiation. Moreover, it appears that the irradiation of packaging material induced a formation of 1,3-di-tertbutylbenzene, which migrated into the red pepper powder.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...