Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-904X
    Keywords: permeability ; bioavailability ; rats ; dogs ; humans ; oral delivery ; peptides ; and salmon calcitonin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Purpose. To evaluate a biopharmaceutical approach for selecting formulation additives and establishing the performance specifications of an oral peptide delivery system using sCT as a model peptide. Methods. The effect of formulation additives on sCT effective permeability and transepithelial electrical resistance (TEER) was evaluated in side-by-side diffusion chambers using rat intestinal segments. Baseline regional oral absorption of sCT was evaluated in an Intestinal and Vascular Access Port (IVAP) dog model by administration directly into the duodenum, ileum, and colon by means of surgically implanted, chronic catheters. The effect of varying the input rate and volume of the administered solution on the extent of sCT absorption was also evaluated. Citric acid (CA) was utilized in all studies to cause a transient reduction in local pH. In vitro samples and plasma samples were analyzed by radioimmunoassay (RIA). Two oral delivery systems were prepared based on the results of the in vitro and IVAP studies, and evaluated in normal dogs. Results. Maximal permeability enhancement of sCT was observed using taurodeoxycholate (TDC) or lauroyl carnitine (LC) in vitro. Ileal absorption of sCT was higher than in other regions of the intestine. Low volume and bolus input of solution formulations was selected as the optimal condition for the IVAP studies since larger volumes or slower input rates resulted in significantly lower sCT bioavailability (BA). Much lower BA of sCT was observed when CA was not used in the formulation. The absolute oral bioavailability (mean ± SD) in dogs for the control (sCT + CA) and two proprietary sCT delivery systems was 0.30% ± 0.05%, 1.10 ± 0.18%, and 1.31 ± 0.56%, respectively. Conclusions. These studies demonstrate the utility of in vitro evaluation and controlled in vivo studies for developing oral peptide delivery strategies. Formulation additives were selected, the optimal intestinal region for delivery identified, and the optimal release kinetics of additives and actives from the delivery system were characterized. These methods were successfully used for devising delivery strategies and fabricating and evaluating oral sCT delivery systems in animals. Based on these studies, sCT delivery systems have been fabricated and tested in humans with favorable results.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-904X
    Keywords: intestinal motility ; regional pH ; oral absorption ; peptide drugs ; salmon calcitonin ; IAP dogs
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Purpose. To investigate the regional influence of intestinal spreadingand pH recovery on the performance of drug and excipient deliverysystems and their impact on the oral absorption of a model peptidedrug, salmon calcitonin (sCT), in conscious beagle dogs. Methods. Male beagle dogs were surgically prepared with subdermalIntestinal Access Ports (IAP). The catheter from one port was placedin the duodenum and the other in the ileum. Fluoroscopy and HeidelbergpH capsule studies were performed to characterize intestinal spreadingand pH recovery, respectively. Three treatments were performed: (1)a radiopaque dye and citric acid (CA) were infused into the intestinalsegments, (2) a radiopaque powder capsule containing CA was givenorally, and (3) capsules containing CA and sCT were given orally.Regular blood samples were collected and analyzed byradioimmunoassay (RIA) to determine the absorption characteristics of sCT. Results. Since sCT is an excellent substrate for the pancreatic serineprotease trypsin, the rate of degradation of sCT in the GI lumen isdependent upon the regional pH, activity of digestive enzymes and theconcentration of sCT at the site of absorption. Fluoroscopy resultsclearly showed that when the radiopaque dye was infused into theduodenum and capsule disintegration occurred early, there wassignificant dilution and spreading of the excipients throughout a large sectionof the upper small intestine (USI). However, when the radiopaque dyewas infused into the ileum and capsule disintegration occurred in thelower small intestine (LSI), the excipients moved along as a bolus (i.e.,plug). The pH monitoring results were consistent with the fluoroscopyresults. The pH dropped only momentarily and rose quickly in the USIconsistent with well-stirred mixing kinetics. In the LSI, dilution andspreading were minimal and the drop in pH was greater and persistedfor a longer period of time. Plasma levels of sCT were maximal whendisintegration occurred in the LSI. Conclusions. Since significantly less dilution and spreading occurredin the LSI, the exposure of the intestine to pharmaceutical excipientsand sCT was more concentrated resulting in a higher fraction of sCTabsorbed. The results of this study demonstrate that intestinal mixingkinetics have a dramatic impact on the ability of pharmaceuticalexcipients to modulate the oral bioavailability of peptide drugs like sCT.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...