Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1203
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract. Human claudin-1 is an integral protein component of tight junctions, a structure controlling cell-to-cell adhesion and, consequently, regulating paracellular and transcellular transport of solutes across human epithelia and endothelia. Recently, a claudin-1 (CLDN1) cDNA has been isolated from human mammary epithelial cells (HMECs). CLDN1 expression in HMECs, in contrast to low or undetectable levels of expression in a number of breast tumors and breast cancer cell lines, points to CLDN1 as a possible tumor-suppressor gene. In order to evaluate the CLDN-1 gene in sporadic and hereditary breast cancer, we have characterized its genomic organization and have screened the four coding exons for somatic mutations in 96 sporadic breast carcinomas and for germline mutations in 93 breast cancer patients with a strong family history of breast cancer. In addition, we have compared the 5'-upstream sequences of the human and murine CLDN1 genes to identify putative promoter sequences and have examined both the promoter and coding regions of the human gene in the breast cancer cell lines showing decreased CLDN1 expression. In the sporadic tumors and hereditary breast cancer patients, we have found no evidence to support the involvement of aberrant CLDN1 in breast tumorigenesis. Likewise, in the breast cancer cell lines, no genetic alterations in the promoter or coding sequences have been identified that would explain the loss of CLDN1 expression. Other regulatory or epigenetic factors may be involved in the down-regulation of this gene during breast cancer development.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1203
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Cowden’s syndrome (CS) is an autosomal dominant disorder associated with an increased risk of developing benign and malignant tumors in a variety of tissues, including the skin, thyroid, breast and brain. Women with CS are felt to have an increased risk of developing breast cancer, and virtually all women with CS develop bilateral fibrocystic disease of the breast. Recently, a series of germline mutations have been identified from CS families in a gene known as PTEN/MMAC1/TEP1. In this study, we used heteroduplex analysis and direct sequencing analysis and identified three novel germline mutations in the PTEN/MMAC1/TEP1 coding sequence from unrelated individuals with CS. We report a de novo transition (T→C) at nucleotide 335 in exon 5. This missense mutation resulted in a leucine to proline (CTA to CCA) change at codon 112. We also describe a novel splice site mutation (801+2T→G) in intron 7 that caused exon skipping in PTEN/MMAC1/TEP1 mRNA. The third mutation we report is a missense mutation, consisting of a transition (T→C) at nucleotide 202 in exon 3, resulting in a tyrosine to histidine (TAC to CAC) change at codon 68. Finally, we also detected a rare polymorphism in exon 7 of the PTEN/MMAC1/TEP1 coding sequence. These data confirm the observation that mutations of the PTEN/MMAC1/ TEP1 coding sequence are responsible for at least some cases of CS, and further define the spectrum of mutations in this autosomal dominant disorder.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1203
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary X-inactivation patterns were studied by replication analyses both in lymphocytes and skin fibroblasts of two patients carrying balanced X-autosome translocations, t(X;10)-(pter;q11) and t(X;17)(q11;q11), and one patient with an unbalanced translocation t(X;22)(p21;q11). Preferential late replication of the normal X chromosome was found in lymphocytes of both patients carrying balanced translocations and in skin fibroblasts of the patient carrying the translocation t(X;17). However, skin fibroblasts of the patient with a translocation t(X;10) showed preferential late replication of the abnormal der(X) chromosome with no spreading of late replication to the autosomal segment. In the case of unbalanced translocation t(X;22) there was preferential late replication of the der(X) chromosome both in lymphocytes and skin fibroblasts. The abnormal phenotype of the patients is discussed in relation to the observed X-inactivation patterns and the variability of the patterns in different tissues.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...