Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 15 (1992), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Concurrent measurements of leaf gas exchange and on-line 13C discrimination were used to evaluate the CO2 conductance to diffusion from the stomatal cavity to the sites of carboxylation within the chloroplast (internal conductance; gi). When photon irradiance was varied it appeared that gi and/or the discrimination accompanying carboxylation also varied. Despite this problem, gi, was estimated for leaves of peach (Prunus persica), grapefruit (Citrus paradisi), lemon (C. limon) and macadamia (Macadamia integrifolia) at saturating photon irradiance. Estimates for leaves of C. paradisi, C. limon and M. integrifolia were considerably lower than those previously reported for well-nourished herbaceous plants and ranged from 1.1 to2.2μmol CO2 m−2 s−1 Pa−1, whilst P. persica had a mean value of 3.5 μmol CO2 m−2 s−1 Pa−1. At an ambient CO2 partial pressure of 33Pa, estimates of chloroplastic partial pressure of CO2 (Cc) using measurements of CO2 assimilation rate (A) and calculated values of gi, and of partial pressure of CO2 in the stomatal cavity (Cst) were as low as 11.2 Pa for C. limon and as high as 17.8Pa for peach. In vivo maximum rubisco activities (Vmax) were also determined from estimates of Cc. This calculation showed that for a given leaf nitrogen concentration (area basis) C. paradisi and C. limon leaves had a lower Vmax than P. persica, with C. paradisi and C. limon estimated to have only 10% of leaf nitrogen present as rubisco. Therefore, low CO2 assimilation rates despite high leaf nitrogen concentrations in leaves of the evergreen species examined were explained not only by a low Cc but also by a relatively low proportion of leaf nitrogen being used for photosynthesis. We also show that simple one-dimensional equations describing the relationship between leaf internal conductance from stomatal cavities to the sites of carboxylation and carbon isotope discrimination (Δ) can lead to errors in the estimate of gi. Potential effects of heterogeneity in stomatal aperture on carbon isotope discrimination may be particularly important and may lead to a dependence of gi upon CO2 assimilation rate. It is shown that for any concurrent measurement of A and Δ, the estimate of Cc is an overestimate of the correct photosynthetic capacity-weighted value, but this error is probably less than 1.0 Pa.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 18 (1995), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Internal conductances to CO2 transfer from the stomatal cavity to sites of carboxylation (gi) in hypostomatous sun-and shade-grown leaves of citrus, peach and Macadamia trees (Lloyd et al. 1992) were related to anatomical characteristics of mesophyll tissues. There was a consistent relationship between absorptance of photosynthetically active radiation and chlorophyll concentration (mmol m−2) for all leaves, including sclerophyllous Macadamia, whose transmittance was high despite its relatively thick leaves. In thin peach leaves, which had high gi, the chloro-plast volume and mesophyll surface area exposed to intercellular air spaces (ias) per unit leaf area were similar to those in the thicker leaves of the evergreen species. Peach leaves, however, had the lowest leaf dry weight per area (D/a), the lowest tissue density (Td) and the highest chloro-plast surface area (Sc) exposed to ias. There were negative correlations between gi and leaf thickness or D/a, but positive correlations between gi and Sc or Sc/Td.We developed a one-dimensional diffusion model which partitioned gi into a gaseous diffusion conductance through the ias (gias) plus a liquid-phase conductance through mesophyll cell walls (gcw). The model accounted for a significant amount of variation (r2=0.80) in measured gi by incorporating both components. The gias component was related to the one-dimensional path-length for diffusion across the mesophyll and so was greater in thinner peach leaves than in leaves of evergreen species. The gcw component was related to tissue density and to the degree of chloroplast exposure to the ias. Thus the negative correlations between gi and leaf thickness or D/a related to gias whereas positive correlations between gi and Sc or Sc/Td, related to gcw. The gcw was consistently lower than gias, and thus represented a greater constraint on CO2 diffusion in the mesophylls of these hypostomatous species.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Data from the US/IBP Desert Biome validation studies indicate that above-ground production and biomass allocated to reproduction in Larrea tridentata vary from one year to another depending upon the timing and extent of soil-moisture availability. In an attempt to verify these observations and determine to what extent water availability can affect total aboveground production and reproductive allocation in this widely distributed warm desert shrub, a series of soil-moisture augmentation experiments were conducted. High levels of soil moisture had a greater effect on reproductive allocation than on total above-ground production. Enhanced soil moisture during the period of active growth increased total above-ground production and reduced the percentage of biomass allocated to reproduction. Enhanced soil moisture during the normal periods of little or no growth did not increase total above-ground production.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 72 (1983), S. 3-12 
    ISSN: 1573-5036
    Keywords: Citrus jambhiri ; Citus aurantium ; Rootstocks ; Rough lemon ; Soil redox potential ; Sour orange
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Rough lemon (Citrus jambhiri Lush.) and sour orange (C. aurantium L.) seedlings were grown at constant soil temperatures of 16, 24, and 33 C for 3 months. Shoot and root growth of rough lemon was greatest at 33 C while growth of sour orange was greatest at 24 C. There were no significant effects of soil temperature on shoot: root ratio, leaf water potential or stomatal conductance. The hydraulic conductivity of intact root systems of both species was highest when seedlings were grown at 16 C. Thus, acclimation through greater root conductivity at low soil temperature may have compensated for decreased root growth at 16 C and negated effects of soil temperature on plant water relations. Half the plants growing at each soil temperature were subsequently flooded. Within 1 week, the soil redox potential (Eh) dropped below zero mV, reaching a minimum Eh of −250mV after 3 weeks of flooded conditions. Flooded plants exhibited lower root conductivity, a cessation of shoot growth, lower leaf water potentials, lower stomatal conductances, and visual sloughing of fibrous roots. Decreases in root conductivity in response to flooding were large enough to account for the observed decreases in stomatal conductance.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-5036
    Keywords: Carrizo citrange ; CO2 assimilation ; nitrogen and phosphorus uptake ; root and shoot water relations ; sour orange ; sweet orange ; vesicular-arbuscular mycorrhizae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Seedlings of the rootstocks Pineapple sweet orange (SwO), Carrizo citrange (CC), and sour orange (SO) were grown in low phosphorus (P) sandy soil and either inoculated with the vesicular-arbuscular mycorrhizal (VAM) fungus,Glomus intraradices, or were non-mycorrhizal (NM) and fertilized with P. VAM and NM seedings of similar shoot size and adequate P-status were selected for study of salinity and flooding stress. One-third of each of the VAM and NM plants were given 150 mM NaCl for a period of 24 days. One-third of the plants were placed into plastic bags and flooded for 21 days while the remaining third were non-stressed controls. In general, neither stress treatment affected mycorrhizal colonization. Salinity stress reduced the hydraulic conductivity of roots, leaf water potential, stomatal conductance and net assimilation of CO2 (ACO2) of mycorrhizal and non-mycorrhizal seedlings to a similar extent. VAM plants of CC and SO accumulated more Cl in leaves than NM plants. Cl was higher in non-mycorrhizal roots of SwO and CC than in mycorrhizal roots. Flooding the root zone for 3 weeks did not produce visible symptoms in the shoot but did influence plant water relations and reduce ACO2 of all 3 rootstocks. VAM and NM plants of each rootstock were affected similarly by flooding. Comparable reduction in nitrogen and P content of both mycorrhizal and non-mycorrhizal plants suggested that flooding stress was primarily affecting root rather than hyphal nutrient uptake.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...