Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2242
    Keywords: Soybean ; Glycine max ; Seed weight ; RFLP ; QTL ; Markers
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Seed weight (SW) is a component of soybean, Glycine max (L.) Merr., seed yield, as well as an important trait for food-type soybeans. Two soybean populations, 120 F4-derived lines of ‘Young’xPI416937 (Pop1) and 111 F2-derived lines of PI97100x‘Coker 237’ (Pop2), were mapped with RFLP makers to identify quantitative trait loci (QTLs) conditioning SW across environments and populations. The genetic map of Pop1 consisted of 155 loci covering 973 cM, whereas Pop2 involved 153 loci and covered 1600 cM of map distance. For Pop1, the phenotypic data were collected from Plains, GA., Windblow, N.C., and Plymouth, N.C., in 1994. For Pop2, data were collected from Athens, GA., in 1994 and 1995, and Blackville, S.C., in 1995. Based on single-factor analysis of variance (ANOVA), seven and nine independent loci were associated with SW in Pop1 and Pop2, respectively. Together the loci explained 73% of the variability in SW in Pop1 and 74% in Pop2. Transgressive segregation occurred among the progeny in both populations. The marker loci associated with SW were highly consistent across environments and years. Two QTLs on linkage group (LG) F and K were located at similar genomic regions in both populations. The high consistency of QTLs across environments indicates that effective marker-assisted selection is feasible for soybean SW.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2242
    Keywords: Key words Soybean ; Glycine max ; Seed weight ; RFLP ; QTL ; Markers
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Seed weight (SW) is a component of soybean, Glycine max (L.) Merr., seed yield, as well as an important trait for food-type soybeans. Two soybean populations, 120 F4-derived lines of `Young'×PI416937 (Pop1) and 111 F2-derived lines of PI97100×`Coker 237' (Pop2), were mapped with RFLP makers to identify quantitative trait loci (QTLs) conditioning SW across environments and populations. The genetic map of Pop1 consisted of 155 loci covering 973 cM, whereas Pop2 involved 153 loci and covered 1600 cM of map distance. For Pop1, the phenotypic data were collected from Plains, GA., Windblow, N.C., and Plymouth, N.C., in 1994. For Pop2, data were collected from Athens, GA., in 1994 and 1995, and Blackville, S.C., in 1995. Based on single-factor analysis of variance (ANOVA), seven and nine independent loci were associated with SW in Pop1 and Pop2, respectively. Together the loci explained 73% of the variability in SW in Pop1 and 74% in Pop2. Transgressive segregation occurred among the progeny in both populations. The marker loci associated with SW were highly consistent across environments and years. Two QTLs on linkage group (LG) F and K were located at similar genomic regions in both populations. The high consistency of QTLs across environments indicates that effective marker-assisted selection is feasible for soybean SW.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2242
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Peanut root-knot nematode [Meloidogyne arenaria (Neal) Chitwood] (Ma) is a serious pathogen of soybean, Glycine max L. Merrill, in the southern USA. Breeding for root-knot nematode resistance is an important objective in many plant breeding programs. The inheritance of soybean resistance to Ma is quantitative and has a moderate-to-high variance-component heritability on a family mean basis. The objectives of the present study were to use restriction fragment length polymorphism (RFLP) markers to identify quantitative trait loci (QTLs) conferring resistance to Ma and to determine the genomic location and the relative contribution to resistance of each QTL. An F2 population from a cross between PI200538 (Ma resistant) and ‘CNS’ (Ma susceptible) was mapped with 130 RFLPs. The 130 markers converged on 20 linkage groups spanning a total of 1766 cM. One hundred and five F2:3 families were grown in the greenhouse and inoculated with Ma Race 2. Two QTLs conferring resistance to Ma were identified and PI200538 contributed the alleles for resistance at both QTLs. One QTL was mapped at 0-cM recombination with marker B212V-1 on linkage group-F (LG-F) of the USDA/ARS-Iowa State University RFLP map, and accounted for 32% of the variation in gall number. Another QTL was mapped in the interval from B212D-2 to A111H-2 on LG-E, and accounted for 16% of the variation in gall number. Gene action for the QTL located on LG-F was additive to partially dominant, whereas the gene action for the QTL on LG-E was dominant with respect to resistance. The two QTLs, when fixed on the framework map, accounted for 51% of the variation in gall number in a two-QTL model. The two QTLs for Ma resistance were found in duplicated regions of the soybean genome, and the major QTL for Ma resistance on LG-F is positioned within a cluster of eight diverse disease-resistance loci.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...