Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Group B streptococci (GBS) express a β-haemolysin/cytolysin that contributes to disease pathogenesis. We report an independent discovery and extension of a genetic locus encoding the GBS β-haemolysin/cytolysin activity. A plasmid library of GBS chromosomal DNA was cloned into Escherichia coli, and a transformant was identified as β-haemolytic on blood agar. The purified plasmid contained a 4046 bp insert of GBS DNA encoding two complete open reading frames (ORFs). A partial upstream ORF (cylB) and the first complete ORF (cylE) represent the 3′ end of a newly reported genetic locus (cyl) required for GBS haemolysin/cytolysin activity. ORF cylE is predicted to encode a 78.3 kDa protein without GenBank homologies. The GBS DNA fragment also includes a previously unreported ORF, cylF, with homology to bacterial aminomethyltransferases, and the 5′ end of cylH, with homology to 3-ketoacyl-ACP synthases. Southern analysis demonstrated that the cyl locus was conserved among GBS of all common serotypes. Targeted plasmid integrational mutagenesis was used to disrupt cylB, cylE, cylF and cylH in three wild-type GBS strains representing serotypes Ia, III and V. Targeted integrations in cylB, cylF and cylH retaining wild-type haemolytic activity were identified in all strains. In contrast, targeted integrations in cylE were invariably non-haemolytic and non-cytolytic, a finding confirmed by in frame allelic exchange of the cylE gene. The haemolytic/cytolytic activity of the cylE allelic exchange mutants could be restored by reintroduction of cylE on a plasmid vector. Inducible expression of cylE, cylF and cylEF demonstrated that it is CylE that confers haemolytic activity in E. coli. We conclude that cylE probably represents the structural gene for the GBS haemolysin/cytolysin, a novel bacterial toxin.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Molecular microbiology 15 (1995), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Group B streptococci (GBS) are the leading cause of neonatal pneumonia and meningitis. Adherence of GBS to host tissues may play an important role in the pathogenesis of infection. The host molecules which mediate GBS adherence to host tissues are unknown. Many bacterial pathogens adhere to fibronectin, an important component of the extracellular matrix (ECM). Some pathogens adhere to both immobilized and soluble fibronectin, while others adhere to immobilized fibronectin, but not to soluble fibronectin. Previous data indicated that GBS do not adhere to soluble fibronectin. We studied the ability of GBS to adhere to immobilized fibronectin. Forty-five per cent of the input inoculum of COH1, a virulent GBS isolate, adhered to fibronectin immobilized on polystyrene. COH1 did not adhere to the other ECM proteins tested (laminin, type I collagen, vitronectin, and tenascin). Nine out of nine GBS strains from human sources tested adhered specifically to fibronectin at levels varying from 4–60%. We considered the possibility that GBS were adherent to a contaminant in the fibronectin preparation. Properties of fibronectin, including the presence of an immunologic epitope of fibronectin and binding to collagen, were verified to be properties of the molecule to which GBS adhere. COH1 adhered to fibronectin captured by a monoclonal antibody to fibronectin (FN-15), confirming that the molecule to which GBS adhere bears immunologic determinants of fibronectin. Adherence of COH1 to fibronectin was inhibited by collagen, confirming that the molecule to which GBS adhere binds to collagen. These data strongly suggest that GBS adhere to fibronectin, and not to a contaminant. Protein blot analysis revealed that GBS were adherent to a high-molecular-weight variant of non-reduced fibronectin monomers and dimers. GBS did not adhere to reduced fibronectin monomers. We conclude that GBS adhere to a variant of plasma fibronectin when attached to a solid phase.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-0603
    Keywords: Adherence ; Chorioamnion ; Extracellular matrix ; Group B. streptococci ; Invasion fibronectin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Streptococcus agalactiae or group B streptococci (GBS) are gram-positive diplococci and are the leading bacterial cause of pneumoniae, sepsis, and meningitis in neonates. Neonatal GBS infections may occur prior to or during birth. GBS have been cultured from the chorioamnionic membrane of pregnant women and have therefore been associated with chorioamnionitis and premature labor. A potential route for GBS to establish infection of a neonate would be to penetrate the placental membrane of colonized pregnant women. In our laboratory, we have constructed in vitro systems to emulate certain events during the colonization and invasion of host epithelial cell tissues by GBS. By utilizing techniques to grow primary cultures of both chorion cells and amnion cells isolated from human C-section placentas, we have established a relevant model to investigate certain aspects of GBS adherence and invasion into the placental membrane. To identify relevant molecules required for GBS to colonize the multiple tissues it encounters during an infection, we have applied a variety of biochemical approaches with host cell membrane preparations as well as purified extracellular matrix proteins. These techniques are enabling us to further characterize the pathogenic mechanisms utilized by GBS.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...