Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    International journal of cosmetic science 27 (2005), S. 0 
    ISSN: 1468-2494
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: This in vitro study was performed to elucidate the reaction mechanism of sodium fluoride (NaF), which is added to tooth-bleaching agents to lessen the adverse effect of hydrogen peroxide (H2O2) on teeth. Both hydroxyapatite (HAP) and dihydrated dicalcium phosphate (DCPD), model substances for dental hard tissues, dissolved easily in a simple H2O2 solution. In the H2O2/NaF solutions, however, fluorine compounds that could not be identified by X-ray diffraction (XRD) due to the smallness of the products were formed on the surface of the HAP. X-ray photoelectron spectroscopy (XPS) studies demonstrated that fluoridated hydroxyapatite (FHAP) was formed on HAP, and that calcium fluoride (CaF2) formation was accelerated by increasing the concentrations of fluorine and H2O2 along with the partial dissolution of HAP. In H2O2/NaF solution, DCPD also transformed easily to FHAP and CaF2, which are favorable to the remineralization process on the tooth surface. Thus, the mechanism of NaF was elucidated, and its use together with H2O2 for tooth bleaching was proved to be effective. Methodologically, the XPS two-dimensional plot made it possible for the first time to directly estimate the ratio of FHAP and CaF2 in the reaction products, in contrast to the conventional wet-analytical method, which is simply based on the difference in solubility of the two components.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    International journal of cosmetic science 27 (2005), S. 0 
    ISSN: 1468-2494
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: This in vitro study was performed to elucidate the reaction mechanism of sodium fluoride (NaF), which is added to tooth-bleaching agents to lessen the adverse effect of hydrogen peroxide (H2O2) on teeth. Both hydroxyapatite (HAP) and dihydrated dicalcium phosphate (DCPD), model substances for dental hard tissues, dissolved easily in a simple H2O2 solution. In the H2O2/NaF solutions, however, fluorine compounds that could not be identified by X-ray diffraction (XRD) due to the smallness of the products were formed on the surface of the HAP. X-ray photoelectron spectroscopy (XPS) studies demonstrated that fluoridated hydroxyapatite (FHAP) was formed on HAP, and that calcium fluoride (CaF2) formation was accelerated by increasing the concentrations of fluorine and H2O2 along with the partial dissolution of HAP. In H2O2/NaF solution, DCPD also transformed easily to FHAP and CaF2, which are favorable to the remineralization process on the tooth surface. Thus, the mechanism of NaF was elucidated, and its use together with H2O2 for tooth bleaching was proved to be effective. Methodologically, the XPS two-dimensional plot made it possible for the first time to directly estimate the ratio of FHAP and CaF2 in the reaction products, in contrast to the conventional wet-analytical method, which is simply based on the difference in solubility of the two components.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0196-9781
    Keywords: Circadian cycle ; Cyclic AMP ; Pineal gland ; VIP
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Although clinical and metabolic profiles of families with maturity-onset diabetes of the young (MODY) are diverse5, most MODY patients present a decreased insulin response to glucose, suggesting a primary pancreatic /3-cell defect6. Genes whose products seem to be involved in insulin secretion ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0428
    Keywords: Glucokinase gene ; microsatellite ; polymorphism ; linkage disequilibrium ; haplotypes ; Type 2 (non-insulin-dependent) diabetes mellitus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The purpose of this study was to evaluate the role of potential glucokinase defects contributing to susceptibility to Type 2 (non-insulin-dependent) diabetes mellitus in Welsh Caucasians. For this analysis, two microsatellite repeat polymorphisms flanking opposite ends of the gene were employed. For a recently described microsatellite (GCK2), located 6 kilobases upstream of islet exon 1, six different sized alleles were observed, with heterozygosity of 0.50 and polymorphism information content 0.44. Combined heterozygosity with another microsatellite repeat (GCK1) was 0.72. Significant linkage disequilibrium was noted between GCK2 and GCK1, suggesting that haplotypes may be a better predictor of Type 2 diabetes than analysis with either microsatellite alone. Using these two markers, the association with Type 2 diabetes was examined. The frequencies of alleles and genotypes at GCK1 did not differ between the patients with Type 2 diabetes (n=157) and control subjects (n=73). Similarly no differences were observed in GCK2 alleles or genotypes. The frequencies of haplotypes, derived from the two markers, also did not differ between the two groups. To investigate the possibility of minor metabolic effects of glucokinase defects, we also studied the association between the GCK alleles or haplotypes and the response profiles to meal tolerance tests. No association was observed between plasma glucose or insulin responses to meal tolerance tests with GCK haplotypes or alleles. These results suggest that glucokinase mutations in Welsh Caucasians are not major determinants of susceptibility to the common type of Type 2 diabetes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-0428
    Keywords: Familial Type 2 (non-insulin-dependent) diabetes mellitus linkage analysis ; glucokinase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Glucokinase is among the few genes which may play a key role in both insulin secretion and insulin action. Glucokinase is present in pancreatic beta cells where it may have a key role in the glucose sensing mechanism, and it is present in hepatocytes, where it may participate in glucose flux. Glucokinase defects have recently been implicated in maturity-onset diabetes of the young. To examine the hypothesis that glucokinase plays a key role in the predisposition to common familial Type 2 (non-insulin-dependent) diabetes mellitus, we typed 399 members of 18 Utah pedigrees with multiple Type 2 diabetic individuals for two markers in the 5′ and 3′ flanking regions of the glucokinase gene. Linkage analysis was performed under both dominant and recessive models. We also repeated these analyses with individuals with impaired glucose tolerance who were considered affected if their stimulated (2-h) glucose exceeded age-specific normal levels for 95 % of the population. Under several dominant models, linkage was significantly excluded, and under recessive models log of the odds (LOD) score was less than −1. We were also unable to demonstrate statistical support for the hypothesis that a small subgroup of pedigrees had glucokinase defects, but the most suggestive pedigree (individual pedigree LOD 1.8–1.9) ranked among the youngest and leanest in our cohort. We can exclude a major role for glucokinase in familial Type 2 diabetes, but our data cannot exclude a role for this locus in a minority of pedigrees. Further testing of the hypothesis that glucokinase defects contribute to diabetes in a small proportion of Type 2 diabetic pedigrees must await thorough sequence analysis of the glucokinase gene, including regulatory regions, particularly from pedigrees with positive LOD scores.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-0428
    Keywords: Key words Type 2 (non-insulin-dependent) diabetes mellitus, glucokinase, gestational diabetes, American Blacks, single-strand conformation polymorphism.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Mutations of the glucokinase gene result in early-onset familial Type 2 (non-insulin-dependent) diabetes mellitus, and several members of the mutant glucokinase kindreds were originally diagnosed as having gestational diabetes. This study examined the glucokinase gene in 270 American Black women, including 94 with gestational diabetes whose diabetes resolved after pregnancy (gestational diabetes only), 77 with gestational diabetes who developed Type 2 diabetes after pregnancy (overt diabetes), and 99 normal control subjects who were recruited during the peripartum period. Two simple sequence repeat polymorphisms flanking either end of the glucokinase gene were evaluated. No association was found between glucokinase alleles and gestational diabetes only or overt diabetes, after adjustment for multiple comparisons. To detect single base changes, all 11 exons and proximal islet and liver promoter regions were examined by polymerase chain reaction plus single-stranded conformational polymorphism analysis in 45 gestational diabetes only patients who had not yet developed Type 2 diabetes. Nine coding region variants were identified: Ala11 (G CC) to Thr11 (A CC) in islet exon 1, and 8 variants either in untranslated regions or in the third base of a codon. Four variant sites were found in introns, but none in splicing consensus sequences. Analysis of the promoter regions revealed two common variants, G→A at islet −30 (24 %), and G→A at liver −258 (42 %). The frequencies of the promoter variants, determined by allele specific polymerase chain reaction analysis, did not differ among the three groups. Thus, no significant coding sequence glucokinase mutations were found in 90 alleles from 45 patients with gestational diabetes. Further studies will be required to rule out a minor role of the newly-described promoter region variants as susceptibility factors in this disorder. [Diabetologia (1994) 37: 104–110]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-0428
    Keywords: Key words: NIDDM, glucose transporter, allele, genotype.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The purpose of these experiments was to test the hypothesis that impaired glucose-stimulated insulin secretion in NIDDM is due to mutations in the islet beta cell/liver glucose transporter (GLUT 2) gene. Using oligonucleotide primers flanking each of the 11 exons, the structural portion of the gene was studied by PCR-SSCP analysis. DNA from African-American females (n =48), who had gestational diabetes but developed overt NIDDM after delivery, was studied. Each SSCP variant was sequenced directly from genomic DNA. Two amino acid substitutions from the previously reported sequence were found, one in exon 3 and the other in exon 4 B. Four additional silent mutations in the coding region, and six intron mutations outside the splice junction consensus sequences, were also identified. The mutation GTC×ATC in exon 4 B substituted Val197 to Ile197. This amino acid substitution was found in only one NIDDM patient in a single allele, and was not found in 52 control subjects. This residue exists in the fifth membrane spanning domain, and Val at this position is conserved in mouse and rat GLUT 2, and human GLUT 1 to GLUT 4. The other codon change in exon 3, ACT×ATT, substituted Thr110 to Ile110 in the second membrane spanning domain. To determine the frequency of this non-conservative amino acid substitution, a PCR-LCR assay was developed. This assay was simple and highly specific for detection of this single nucleotide substitution. The allelic frequency of the ATT (Ile110) in NIDDM patients (39.6 %, n =48) and that in controls (47.1 %, n =52) did not differ (p =0.32, Fisher's exact test). In conclusion, we identified two variant GLUT 2 glucose transporters in a subset of NIDDM patients. The rare variant in exon 4 B may contribute to the diabetic susceptibility and awaits further investigation. However, structural abnormalities of the GLUT 2 transporter associated with NIDDM appeared to be rare and were not likely to be a major determinant of genetic susceptibility to this type of diabetes in the population studied. [Diabetologia (1994) 37: 420–427]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-0428
    Keywords: Non-insulin-dependent diabetes mellitus ; genetics ; GLUT1 ; single-strand conformation polymorphism ; mutation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary To evaluate the role of mutations in the glucose transporter (GLUT1) gene in Japanese patients with non-insulin-dependent diabetes mellitus (NIDDM), we first conducted a population association study using the XbaI polymorphism of the gene. A polymerase chain reaction (PCR)-based assay was developed and used for the analysis. When analysed in 91 diabetic patients and 87 non-diabetic control subjects, the distribution of the genotype frequency was significantly different between the two groups (p=0.0025). The (−) allele was significantly associated with NIDDM (odds ratio 2.317, 95% confidence interval 1.425−3.768). To identify possible mutation(s) in the GLUT1 gene, which was in linkage disequilibrium with the (−) allele, all ten exons of the gene were analysed by PCR single-strand conformation polymorphism (SSCP) analysis in 53 diabetic patients with at least one (−) allele. Variant SSCP patterns were detected in exons 2, 4, 5, 7, 9 and 10. Sequence analysis revealed that all the variants represented silent mutations. One of the variants in exon 2, GCT (Ala15)→GCC(Ala), created a HaeIII restriction site. This polymorphism was common in Japanese subjects with heterozygosity of 0.36 and polymorphism information content 0.29. We conclude that the structural mutation of GLUT1 is rare and not likely to be a major genetic determinant of NIDDM in Japanese subjects. The Xbal (−) allele of the GLUT1 gene appeared to be a genetic marker of NIDDM in Japanese subjects. The possibility of the presence of mutation(s) in the regulatory region of the gene or in another locus nearby could not be excluded.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-0428
    Keywords: Keywords Potassium channel ; inward rectifier ; non-insulin-dependent diabetes mellitus ; genetics ; single strand conformation polymorphism.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Ligand gated potassium channels, such as the ATP-regulated potassium channel, play crucial roles in coupling of stimuli to insulin secretion in pancreatic beta cells. Mutations in the genes might lead to the insulin secretory defects observed in patients with non-insulin-dependent diabetes mellitus (NIDDM). We isolated a cDNA encoding a putative subunit of a ligand gated potassium channel from a human islet cDNA library. The channel, which we designated hiGIRK2, appeared to be an alternative spliced variant and a human homologue of recently reported mbGIRK2, KATP-2/BIR1. Transcripts were detected in human brain and pancreas, but not in other tissues including cardiac muscle. The sizes of transcripts in the pancreas differed from those in the brain, suggesting tissue-specific alternative splicing and possible isoforms. We then isolated human genomic clones, determined the complete genomic structure and localized the gene to chromosome 21 (21q22). The gene was comprised of four exons and the protein was encoded by three exons. The entire coding region of the hiGIRK2 gene was scanned by polymerase chain reaction-single strand conformation polymorphism analysis in 80 Japanese NIDDM patients. We found five nucleotide substitutions; three were silent mutations of the third base of codons, one in the first intron, 9 bases upstream of exon 2, and one in the 3 ′-untranslated region. We conclude that mutations in the gene encoding hiGIRK2, a (subunit of) ligand gated potassium channel, is not a major determinant of the susceptibility to NIDDM in Japanese. [Diabetologia (1996) 39: 447–452]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...