Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Plant, cell & environment 24 (2001), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The consequences of manipulating abscisic acid (ABA) biosynthesis rates on stomatal response to drought were analysed in wild-type, a full-deficient mutant and four under-producing transgenic lines of N. plumbaginifolia. The roles of ABA, xylem sap pH and leaf water potential were investigated under four experimental conditions: feeding detached leaves with varying ABA concentration; injecting exogenous ABA into well-watered plants; and withholding irrigation on pot-grown plants, either intact or grafted onto tobacco. Changes in ABA synthesis abilities among lines did not affect stomatal sensitivity to ABA concentration in the leaf xylem sap ([ABA]xyl), as evidenced with exogenous ABA supplies and natural increases of [ABA]xyl in grafted plants subjected to drought. The ABA-deficient mutant, which is uncultivable under normal evaporative demand, was grafted onto tobacco stock and then presented the same stomatal response to [ABA]xyl as wild-type and other lines. This reinforces the dominant role of ABA in controlling stomatal response to drought in N. plumbaginifolia whereas roles of leaf water potential and xylem sap pH were excluded under all studied conditions. However, when plants were submitted to soil drying onto their own roots, stomatal response to [ABA]xyl slightly differed among lines. It is suggested, consistently with all the results, that an additional root signal of soil drying modulates stomatal response to [ABA]xyl.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Plant, cell & environment 25 (2002), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Root architecture can be profoundly affected by the carbon availability in the plant. We hypothesized that this effect could be mediated by the carbon status of root cells involved in elongation and branching processes. Arabidopsis thaliana plants were grown at several photosynthetic photon flux densities (PPFD) and were supplied with various sucrose concentrations in the root medium. Hexose and sucrose concentration was estimated in individual roots in the apical growing region of the primary root and of secondary roots as well as in the zone of primordia development. Local sugar concentration was high in fast-growing and in highly branched roots and robust relationships between root elongation rate or branching and hexose concentration (but not sucrose) were found that were common to all situations experienced. Moreover, these relationships accounted for the plant-to-plant variability within a treatment as well as for the variability among individual secondary roots within a plant. These results support the view that local hexose concentration integrates changes in carbon availability from several sources and acts as a signal to induce at least part of the response of the root architecture to the environment.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Plant, cell & environment 21 (1998), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: We have tested whether the effects of temperature on sunflower leaf growth could be documented by using thermal time. The rates of leaf expansion and of cell division were analysed in leaves located at two positions on the stem, and a spatial analysis of expansion rate was carried out. Experiments were performed in growth chamber (stable conditions), in the field or in a greenhouse (fluctuating conditions). We compared three methods for characterizing the rate and the duration of expansion. Responses to leaf temperature were consistent only when expansion was characterized as a two-phase process — a period of exponential expansion (constant relative expansion rate, RER) followed by a decrease in RER. RER and relative cell division rate (RDR) responded linearly to temperature with a common response curve for all studied conditions. This response curve was also common to all studied zones within a leaf and to leaves at two positions on the stem. The reciprocals of the durations of the periods of exponential expansion, non-zero expansion and non-zero division were also linearly related to leaf temperature with common response curves in a given leaf zone. The x-intercepts of all these response curves and of the response curve of leaf initiation rate to temperature did not significantly differ in an analysis of covariance, with a common value of 4·8 °C. The expression of time in cumulative degree days, with a base temperature of 4·8 °C, resulted in a unique time course of RER and cell division rate regardless of temperature. These results suggest that a powerful ‘program’ of leaf development exists in a sunflower plant.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 21 (1998), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: We have investigated the way in which the radiation absorbed by leaves affects the rate of elongation of maize (Zea mays L.) roots. In five repeated growth chamber experiments, plants previously grown at a photon irradiance of 23 mol m–2 d–1 received either 7 or 34 mol m–2 d–1 from day 10 to day 20 after germination. The elongation rate of primary roots steadily decreased for 4 d after reduction in irradiance and then stabilized at 60% of that in plants at high irradiance. The elongating zone was slightly shorter after 2 d at low irradiance, and was further reduced after 8 d. The concentrations of sucrose and glucose in the elongating zone were greatly decreased after 2 d at low irradiance and the gradient of both sugars was suppressed. The longer period at low irradiance affected neither sugar content nor gradient. In the same way, cell production rate was reduced after 2 d at low irradiance and was not appreciably decreased afterwards. The root zone with cell division was shorter in plants at low irradiance, but cell division rate remained nearly constant temporally and spatially, and was unaffected by the irradiance treatment. Our results suggest that primary events after a reduction in irradiance were a change in cell flux and sugar content in the elongating zone. Change in elongation rate was slower and probably the result of a time-related developmental effect, which may be related to the change in cell production.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 17 (1994), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The existence of relationships between intercepted photo-synthetic photon flux density (PPFD) and growth of individual organs is somewhat controversial. We have tested whether such relationships could account for the natural variability in elongation rates of taproot and secondary roots of sunflower (from 2 to 135 mm d−1), in field and laboratory conditions. Elongation of taproot and secondary roots was recorded daily through windows in the field. A range of PPFD was obtained by following day-to-day natural fluctuation for three contrasting growing periods, and by shading part of the plants under study. A parallel experiment was carried out in a growth chamber with contrasting light intensities and with a 14CO2 labelling experiment. After the two-leaf stage, i.e. when the contribution of photosynthetic carbon became appreciable in root growth, daily root elongation rate was closely linked to the PPFD intercepted from 36 to 12 h before the measurement of root elongation. Curvilinear relationships applied to plants grown in the field as well as in a growth chamber, and to shaded plants as well as to plants subjected to day-to-day changes in intercepted PPFD. For a given intercepted PPFD, the taproot elongated faster than secondary roots, and secondary roots originating near the base of the taproot elongated faster than those originating near the apex. The elongation rate of any secondary root apex was accounted for (r= 0.77) by the ratio of intercepted PPFD to the distance between the apex and the base of the taproot. No relationships between intercepted PPFD and elongation rate were observed before the two-leaf stage, when the CO2 labelling experiment suggests that carbon essentially originates from the seed. Therefore, this study suggests a role for source-sink relations in the distribution of elongation between apices and a role for carbon nutrition in day-to-day variations of root elongation rate. Precise mechanisms explaining this behaviour remain to be investigated.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 15 (1992), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: During two seasons, ABA concentrations were monitored in roots, leaves and xylem sap of field-grown maize. The water status of soil and plant was also measured. Plants were grown on plots with compacted or non-compacted soil, which were irrigated or remained unwatered. ABA concentration in the xylem sap before dawn and in the roots increases 25-fold and five-fold, respectively, as the soil dried, with a close correlation with the soil water status, but with no clear effect of the soil structure. In contrast to the results of several laboratory experiments, no appreciable increase in xylem [ABA] and reduction in stomatal conductance were observed with dehydration of the part of the root system located in soil upper layers. These responses only occurred when the water reserve of the whole soil profile was close to depletion and the transpiration declined. Xylem [ABA] measured during the day was appreciably higher in the compacted treatment than in non-compacted treatment, unlike that measured before dawn. Since a mechanical message is unlikely to undergo such day-night alterations, we suggest that this was due to a faster decrease in root water potential and water flux in the compacted treatment, linked to the root spatial arrangement. These results raise the possibility that ABA concentration in the xylem sap could be controlled by two coexisting mechanisms: (1) the rate of ABA synthesis in the roots linked to the soil or root water status, as shown in laboratory experiments; (2) the dilution of ABA in the water flow from roots, which could be an overriding mechanism in field conditions. This second mechanism would allow the plant to sense the water flux through the root system.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract. Stomatal conductance, leaf water potential, soil water potential and concentration of abscisic acid (ABA) in the xylem sap were measured on maize plants growing in the field, in two treatments with contrasting soil structures. Soil compaction affected the stomatal conductance, but this effect was no longer observed if the soil water potential was increased by irrigation. Differences in leaf water potential did not account for the differences in conductance between treatments. Conversely, the relationship between stomatal conductance and concentration of ABA in the xylem sap was consistent during the experiment. The proposed interpretation is that stomatal conductance was controlled by the root water potential via an ABA message. Control of the stomatal conductance by the leaf water potential or by an effect of mechanical stress on the roots is unlikely.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The ability of the root system architecture to respond to nutrient availability is a key adaptative behaviour allowing plants to cope with environmental conditions. On the basis of single time point comparisons, the response to phosphate deprivation was previously shown to involve both the primary and lateral roots of Arabidopsis. In this work, the temporal pattern of Arabidopsis root responses to phosphate starvation was investigated. Daily scanning of roots showed that changes in architecture were largely due to the alterations of time-based growth parameters, namely a decrease in the elongation rate of the primary root opposed to an increase in the elongation rate of lateral roots and a decrease in the number of initiated lateral roots. In addition, another identified response was a decrease in the proportion of lateral roots showing early growth arrest. All these changes occurred within a short period of approximately 3 d. In addition, the root morphology comparison with the auxin-resistant mutant axr4, the auxin-treatment of phosphate-starved plants and a limited transcriptome analysis supported the conclusion that auxin signalling was involved in the adaptive response of the root system architecture to phosphate deprivation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Plant, cell & environment 22 (1999), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The effect of absorbed photosynthetic photon flux density (PPFD) on leaf expansion is a key issue for analysing the phenotypic variability between plants and for modelling feedback loops. Expansion and epidermal cell division in leaf 8 of sunflower were analysed in a series of five experiments where absorbed photosynthetic photon flux density (PPFD) was reduced either by shading or by covering part of the leaf area. These treatments were imposed at different times during leaf development. Expansion and cell division were affected by a reduction in absorbed PPFD only in the first part of leaf development, while the leaf area was less than 2% of its final value and while absolute expansion rate was slow. In contrast, it was not affected if imposed later when the leaf was visible and absolute expansion rate was at maximum. A reduction in absorbed PPFD caused the same reduction in expansion and in cell division whether it was due to a reduction in incident PPFD or to a reduction in photosynthetic leaf area, suggesting that carbon metabolism was involved. Relative expansion rate recovered to control levels when relative division rate began to decline, in all experiments and in all zones of a leaf. This was probably linked to the source–sink transition, after which the leaf had such a high priority in carbon allocation that it was largely insensitive to changes in absorbed PPFD. The final leaf area was therefore closely related to the cumulated PPFD absorbed by the plant from leaf initiation to the end of exponential cell division.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The stomatal conductance of several anisohydric plant species, including field-grown sunflower, frequently correlates with leaf water potential (φ1), suggesting that chemical messages travelling from roots to shoots may not play an important role in stomatal control. We have performed a series of experiments in which evaporative demand, soil water status and ABA origin (endogenous or artificial) were varied in order to analyse stomatal control. Sunflower plants were subjected to a range of soil water potentials under contrasting air vapour pressure deficits (VPD, from 0.5 to 2.5 kPa) in the field, in the glasshouse or in a humid chamber. Sunflower plants were also fed through the xylem with varying concentrations of artificial ABA, in the glasshouse and in the field. Finally, detached leaves were fed directly with varying concentrations of ABA under three contrasting VPDs. A unique relationship between stomatal conductance (gs) and the concentration of ABA in the xylem sap (xylem [ABA]) was observed in all cases. In contrast, the relationship between φ1 and gs varied substantially among experiments. Its slope was positive for droughted plants and negative for ABA-fed whole plants or detached leaves, and also varied appreciably with air VPD. All observed relationships could be modelled on the basis of the assumption that φ1 had no controlling effect on gs. We conclude that stomatal control depended only on the concentration of ABA in the xylem sap, and that φ1 was controlled by water flux through the plant (itself controlled by stomatal conductance). The possibility is also raised that differences in stomatal ‘strategy’ between isohydric plants (such as maize, where daytime φ1 does not vary appreciably with soil water status) and anisohydric plants (such as sunflower) may be accounted for by the degree of influence of φ1 on stomatal control, for a given level of xylem [ABA]. We propose that statistical relationships between φ1 and gs are only observed when φ1 has no controlling action on stomatal behaviour.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...