Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The presented work pioneers the embryonic Drosophila CNS for studies of the developmental regulation and function of γ-amino butyric acid (GABA). We describe for the first time the developmental pattern of GABA in Drosophila and address underlying regulatory mechanisms. Surprisingly, and in contrast to vertebrates, detectable levels of GABA occur late during Drosophila neurogenesis, after essential neuronal proliferation and growth have taken place and synaptogenesis has been initiated. This timeline is almost unchanged when the GABA synthetase glutamate decarboxylase (GAD) is strongly misexpressed throughout the nervous system suggesting a tight post-translational regulation of GABA expression. We confirmed such GABA control mechanisms in an independent model system, i.e. primary Drosophila cell cultures raised in elevated [K+]. The data suggest that, in both systems, GABA suppression occurs via control of GAD activity. Using developing embryos and cell cultures as parallel assay systems for pharmacological and genetic studies we show that the negative regulation of GAD can be overridden by drugs known to elevate intracellular free [Ca2+]. Our results provide the basis for investigations of genetic mechanisms underlying the observed phenomenon, and we discuss the potential implications of this work for Drosophila neurogenesis but also for a general understanding of GAD regulation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 295 (1982), S. 405-407 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] As in most arthropods, the mushroom bodies of Drosophila are two conspicuous substructures of the median protocerebrum arranged in mirror symmetry to the saggital midplane. The numerous, relatively small cell bodies of their intrinsic neurones (Kenyon cells) are situated in the posterior dorsal ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Naturwissenschaften 61 (1974), S. 111-116 
    ISSN: 1432-1904
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Development genes and evolution 194 (1985), S. 213-216 
    ISSN: 1432-041X
    Keywords: Blastoderm fate map ; Embryogenesis ; Drosophila
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Here we propose a fate map of theDrosophila blastoderm based on reconstructions of increasingly aged embryos and on results of horseradish peroxidase (HRP) injections in early gastrula cells. Boundaries of blastoderm anlagen have been extrapolated from size, form and location of the corresponding larval primordia, once these primordia become distinguishable at later embryonic stages.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Development genes and evolution 195 (1986), S. 489-498 
    ISSN: 1432-041X
    Keywords: Pole cells and midgut progenitors ; Cell lineages ; Embryogenesis ; Drosophila
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary In this paper experiments concerning some aspects of the development of pole cells and midgut progenitors in Drosophila are reported. Cells were labelled by injecting horseradish-peroxidase (HRP) in embryos before pole bud formation and transplanted at different stages into unlabelled embryos, where the transplanted cells developed together with the unlabelled cells of the host. The hosts were then fixed and stained at different ages in order to demonstrate the presence of HRP in the progenies of transplanted cells. The main conlusions of the study are as follows. The gonads are the only organ to the formation of which pole cells normally contribute; those pole cells which do not participate in the formation of the gonads are finally eliminated or degenerate. Since the number of primordial germ cells in the gonads is the same irrespective of the number of pole cells present in the embryo, an (unknown) mechanism must exist regulating the final number of pole cells in each of the gonads. After their formation and before reaching the gonads, pole cells have been found to divide only up to two times. With respect to the midgut progenitors, the cells of both anlagen have been found to be committed to develop into midgut, although they behave as equivalent in that they do not apparently distinguish between the anterior and posterior anlage. Midgut progenitors have been found to divide a maximum of three times and to produce two different types of cells, epithelial cells of the midgut wall and spindle-like cells located internally in the gut.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Development genes and evolution 204 (1994), S. 54-61 
    ISSN: 1432-041X
    Keywords: CNS ; Glia ; Drosophila ; BrdU
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Glial cells are of significant importance for central nervous system development and function. In insects, knowledge of the types and development of CNS glia is rather low. This is especially true for postembryonic glial development. Using bromodeoxyuridine incorporation and enhancer trap lines we identified a reproducible spatial and temporal pattern of DNA replicating cells in the abdominal larval CNS (A3-7 neuromeres) ofDrosophila melanogaster. These cells correspond to embryonically established glial cells in that region. Except for a specific subfraction, these cells apparently do not divide during larval life. Similar patterns were found in two otherDrosophila species,D. virilis andD. hydei.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-041X
    Keywords: Drosophila ; Head development ; Segmentation mutants ; Nervous system ; Optic lobe
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We describe the development of 20 sensory organs in the embryonic Drosophila head, which give rise to 7 sensory nerves of the peripheral nervous system (PNS), and 4 ganglia of the stomatogastric nervous system (SNS). Using these neural elements and the optic lobes as well as expression domains of the segment polarity gene engrailed in the wild-type head of Drosophila embryos as markers we examined the phenotype of different mutants which lack various and distinct portions of the embryonic head. In the mutants, distinct neural elements and engrailed expression domains, serving as segmental markers, are deleted. These mutants also affect the optic lobes to various degrees. Our results suggest that the optic lobes are of segmental origin and that they derive from the ocular segment anteriorly adjacent to the antennal segment of the developing head.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Development genes and evolution 206 (1996), S. 277-280 
    ISSN: 1432-041X
    Keywords: Key words Nervous system development ; Metamorphosis ; Phagocytosis ; Glial cells ; Drosophila melanogaster
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Using electron microscopy we demonstrate that degenerating neurons and cellular debris resulting from neuronal reorganization are phagocytosed by glial cells in the brain and nerve cord of the fruitfly Drosophila melanogaster during the first few hours following pupariation. At this stage several classes of glial cells appear to be engaged in intense phagocytosis. In the cell body rind, neuronal cell bodies are engulfed and phagocytosed by the same glial cells that enwrap healthy neurons in this region. In the neuropil, cellular debris in tracts and synaptic centres resulting from metamorphic re-differentiation of larval neurons is phagocytosed by neuropil-associated glial cells. Phagocytic glial cells are hypertrophied, produce large amounts of lysosome-like bodies and contain a large number of mitochondria, condensed chromatin bodies, membranes and other remains from neuronal degeneration in phagosomes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Development genes and evolution 195 (1986), S. 389-398 
    ISSN: 1432-041X
    Keywords: Cell lineage ; Embryogenesis ; Drosophila ; Cell marking ; Cell transplantation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary A method is presented which allows the study of the progeny of single cells during Drosophila embryogenesis. Cells from various larval anlagen of donor embryos labelled with a lineage tracer are individually transplanted from defined positions into similar, or different, positions in unlabelled hosts. The clones produced by these cells can be seen in whole mounts or in sections of fixed material, when using a histochemical marker (i.e. HRP), and/or in living embryos, when using fluorescent lineage tracers. The characteristics of the clones disclose lineage parameters, such as division patterns, morphogenetic movements and differentiation. The method is especially useful for testing the respective roles of positional information and cell lineage on the commitment of progenitor cells by transplanting these cells into heterotopic positions or into hosts of different genotypes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-041X
    Keywords: Cell interactions ; Cell commitment ; Neurogenesis ; Drosophila
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Cell-cell interactions are involved in mediating developmental fate. An example is the decision of the neuroectodermal cells of Drosophila to develop as neural or epidermal progenitors, where cellular interactions participate in the process of acquisition of either cell fate. The results of heterochronic cell transplantations we describe here suggest that both neuroblasts and epidermoblasts are not irreversibly committed to a particular developmental fate. Rather, they retain the ability to interact with neighbouring cells and, under our experimental conditions, are capable of switching their fate during a relatively long period of time, i.e. until the end of embryonic stage 11.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...