Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The non-Aβ component of Alzheimer's disease amyloid precursor protein (NACP) is predominantly a neuron-specific presynaptic protein that may play a central role in neurodegeneration because NACP fragments are found in Alzheimer's disease amyloid and a mutation in the NACP gene is associated with familial Parkinson's disease. In addition, NACP may play an important role during synaptogenesis and CNS development. To understand better the patterns of NACP expression during development, we analyzed the levels of this protein as well as the levels of another synaptic protein (synaptophysin) by ribonuclease protection assay, western blotting, and immunocytochemistry in fetal, juvenile, and adult mouse brain. From embryonic day 12 to 15, there was a slight increase, which was then followed by a more dramatic increase at later time points. Immunocytochemical staining for NACP increases throughout these stages as well. Although NACP appeared early in CNS development, synaptophysin levels started to rise at a later stage. These findings support the contention that NACP might be important for CNS development. Furthermore, the cytosolic component of NACP precedes the particulate component in development, indicating that a redistribution of the protein to the membrane fraction may be important for events later in neuronal development and in synaptogenesis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 444 (1985), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular medicine 76 (1998), S. 555-567 
    ISSN: 1432-1440
    Keywords: Key words Acetylcholine ; Gene therapy ; Nerve growth factor ; Nucleus basalis ; Transplantation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Alzheimer’s disease is a devastating degenerative disorder of the central nervous system that results in gradual deterioration of cognitive function and severe alteration of personality. Degeneration of neurons in the nucleus basalis Meynert, the origin of the major cholinergic projections to the neocortex, occurs early in the course of the disease, and is correlated with the cognitive decline. This link between cholinergic dysfunction in the basal-cortical system and cognitive deficits has focused scientific efforts on developing tools to elucidate the neurobiological role of the cholinergic system in cognition and to develop therapeutic interventions in the disorder. An important step in understanding the mechanisms underlying cognitive dysfunction has been the development of in vivo rodent models that mimic some of the features of Alzheimer’s disease. Acute excitotoxic or immunotoxic lesions of the nucleus basalis in rodents have revealed a role of the basal-cortical system in attention, learning and memory. More recent advances in developing mouse gene technology offer newer models to systematically examine the underlying neuropathological cascade leading to dysfunctions in mnemonic processing. Using in vivo rodent models, several cholinergic enhancement strategies have been tested and proven to be effective in alleviating lesion-induced cognitive deficits, including neuropharmacological approaches (acetylcholinesterase inhibitors), neurotrophic factor administration (nerve growth factor), and transplantation of cholinergic-enriched fetal grafts. Successful results have also been obtained using ex vivo gene transfer to deliver nerve growth factor or acetylcholine to compromised regions of the basal-cortical system. Gene therapy may be of particular interest for clinical applications, because this approach provides a method for topographically restricted and selective delivery of therapeutic genes and their products to afflicted areas of the brain. Advanced techniques in molecular biology (e.g., exogenous regulatable gene transfer) and newly developed tools of modern neuroscience (e.g., neural precursor cells) will be important contributions for deciphering the biological bases of neuronal degeneration and for refining therapeutic strategies for Alzheimer’s disease.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The APP is thought to be cleaved at a single non-amyloidgenic site within the Aft sequence before secretion13"15. The demonstration of secreted forms of APP cleaved at a site other than that previously described is confounded by the fact that the secreted portion of APP is a glycoprotein translated ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-6903
    Keywords: Acetylcholine ; serotonin ; microdialysis ; frontal cortex ; nucleus basalis magnocellularis ; dorsal raphe nucleus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Rats received a unilateral lesion of the nucleus basalis magnocellularis (NBM) by infusion of ibotenic acid. In addition, the dorsal raphe nucleus was lesioned by infusion of 5,7-dihydroxytryptamine (5,7-DHT). The release of acetylcholine (ACh), choline, serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) was measured in the frontal neocortex by means of microdialysis. Lesions of the NBM, but not the raphe nucleus, reduced the release of ACh significantly (−47%). The release of 5-HT and 5-HIAA was reduced by raphe lesions (−44% and −79%), but not by NBM lesions. In no case did the combined lesion affect neurotransmitter release more than a single lesion. These results suggest that serotonergic projections from the dorsal raphe nucleus are not involved in tonic inhibition of ACh release in the neocortex.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...