Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-3059
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Variation in aggressiveness and its consequences for disease epidemiology were studied in the Cakile maritima–Alternaria brassicicola host–pathogen association. Variability in pathogen growth rates and spore production in vitro, as well as disease severity and lesion growth rate on C. maritima in glasshouse inoculation trials, were investigated. Substantial variation was found in growth rates among individual A. brassicicola isolates, as well as among pathogen populations. A significant trade-off also existed between growth and spore production, such that faster-growing isolates produced fewer spores per unit area. While there was little evidence for a link between growth in vitro and either disease severity or lesion development among fast- vs slow-growth isolate classes at the individual isolate level, the results suggest that variation in pathogen fitness components associated with aggressiveness may influence disease dynamics in nature. An analysis using an independent data set of disease prevalence in the associated host populations found a significant positive relationship between the average growth rate of pathogen populations in vitro and disease progress over the growing season in wild host populations. Trade-offs such as those demonstrated between growth rate and spore production may contribute to the maintenance of variation in quantitatively based host–pathogen interactions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Plant pathology 52 (2003), S. 0 
    ISSN: 1365-3059
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: The Linum marginale–Melampsora lini plant–pathogen interaction has been studied extensively with regard to its epidemiology and population genetic structure (host resistance and pathogen virulence) in a natural metapopulation. In this study, this system was used in an experimental metapopulation approach to investigate explicitly how the distance (degree of isolation) between local population patches influences disease dynamics within a growing season, as well as the genetic structure of pathogen populations through stochastic colonization and extinction processes. The experimental design centred on four replicate sets of populations, within which patches were spaced at increasingly greater distances apart. Each patch consisted of an identical set of host and pathogen genotypes, with each pathogen genotype having the ability to attack only one of four host-resistance types. Over the 2 years of the experiment, the results showed clear ‘boom-and-bust’ epidemic patterns, with the strongest determinant of disease dynamics within a growing season being the identity of particular host–pathogen genotypic combinations. However, there were also significant effects of spatial structure, in that more isolated patches tended to exhibit lower levels of disease during epidemic peaks than patches that were close together. Extinction of pathogen genotypes from individual populations was positively related to the severity of disease during preceding epidemic peaks, but negatively related to the level of disease present at the final census prior to overwintering. The probability of recolonization of pathotypes into populations during the second growing season was most strongly related to the distance to the nearest neighbouring source population in which a given pathotype was present. Overall, these results highlight the importance of spatial scale in influencing the numerical and genetical dynamics of pathogen populations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Plant pathology 49 (2000), S. 0 
    ISSN: 1365-3059
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Existing theory suggests that increasing the diversity of resistance and virulence types in host–pathogen interactions will result in qualitative shifts in spatial and temporal dynamics, and greater among-population asynchrony in disease dynamics and prevalence. Here, data are presented from a biologically realistic metapopulation model of gene-for-gene interactions that indicate that population level variation in resistance diversity will be negatively associated with disease prevalence (fraction of individuals infected). The model also predicts that disease incidence (presence/absence) will be positively related to total resistance diversity across the metapopulation, because high resistance diversity also selects for more virulent pathogens. These results are then contrasted with empirical data from a natural host–pathogen system. While the argument that high resistance diversity should generally lead to lower disease levels has been applied extensively in agricultural situations, the connection between genetic diversity, resistance and disease dynamics has never been demonstrated in natural systems. Here, through analysis of multiyear data on disease prevalence in the context of knowledge of resistance variation among host populations in a natural plant host–pathogen metapopulation, the first evidence is provided that observed levels of asynchrony in disease dynamics may indeed be related to resistance structure.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Plant pathology 51 (2002), S. 0 
    ISSN: 1365-3059
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: The concept of gene-for-gene coevolution is a major model for research on disease resistance in crop plants. However, few theoretical or empirical studies have examined such systems in natural situations, and as a consequence, there is little knowledge of how spatial effects are likely to influence the evolution of host resistance and pathogen virulence in gene-for-gene interactions. In this work, a simulation approach was used to investigate the epidemiological and genetic consequences of varying host and pathogen dispersal in metapopulation situations. The results demonstrate clear impacts of dispersal distance on the total number of host and pathogen genotypes that are maintained, as well as on genetic variation at individual host resistance and pathogen virulence loci. Several other important results also emerged from this study. In contrast to the predictions of many earlier nonspatial models, so-called ‘super-races’ of pathogens do not always evolve and dominate, indicating that it is not necessary to assume costs of resistance or virulence to maintain high levels of polymorphism in biologically realistic situations. The rate of evolution of both resistance and virulence depend on the scale of dispersal, with greater mixing (as a function of dispersal scale) resulting in a faster approach to a dynamic endpoint. The model in this paper also predicts that, despite the greater total genotypic diversity of pathogens across the metapopulation, variation in host resistance will generally be greater than variation in pathogen virulence within local populations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 121 (1999), S. 339-347 
    ISSN: 1432-1939
    Keywords: Key words Flax rust ; Linum ; Melampsora ; Coevolution ; Hybrid zone
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Hybridization between locally adapted plant populations has been postulated to have significant evolutionary consequences, and, in particular, may influence host-pathogen interactions with respect to resistance and virulence structure. This study investigated patterns of resistance and virulence in a hybrid zone between ”bog” and ”hill” ecotypes of the native Australian flax, Linum marginale, where the host is subject to attack by the rust pathogen, Melampsora lini. Analysis of the resistance structure of adjoining bog, hill and hybrid populations found that bog plants were generally susceptible to pathogen isolates taken from all these sites, but that hybrids exhibited resistance levels similar to the more resistant hill plants. Similarly, the virulence structure of rust isolates collected from the hybrid population was more similar to that of the hill isolates than the bog. Controlled crosses between bog and hill plants showed that crosses in one direction (bog females×hill males) were much more successful than the other. A multi-year reciprocal transplant study further indicated that bog plants had significantly higher survivorship than hill plants, regardless of site. It is suggested that likelihood of differential gene flow and survivorship for bog and hill plants may at least partially explain the maintenance of a relatively narrow hybrid zone.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...