Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 86 (1999), S. 2836-2846 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The one-dimensional time dependent heat conduction equation for surface heating and a phase boundary (the so-called classical Stefan problem) has been solved in the absence of vaporization. For a rectangular laser pulse and constant material parameters, useful solutions have been determined for melt depth as a function of time both during and following the pulse. Based on the model, the intensity dependence of the melt depth is investigated. Two melting regimes—slow and fast—have been identified by comparison with previously reported data for silicon. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...