Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillan Magazines Ltd.
    Nature 394 (1998), S. 189-192 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Coherent oscillations, in which ensembles of neurons fire in a repeated and synchronous manner, are thought to be important in higher brain functions. In the hippocampus, these discharges are categorized according to their frequency as theta (4–10 Hz), gamma (20–80 Hz) ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biological cybernetics 25 (1977), S. 163-176 
    ISSN: 1432-0770
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Computer Science , Physics
    Notes: Abstract A scheme for constructing computer models of motorneurons is presented. These model neurons display both repetitive firing and action potentials of appropriate time course; the technique combines ideas of Dodge and Cooley (1973) and Kernell and Sjöholm (1972, 1973). This scheme is used to construct models of motorneurons of different input resistance (and hence different geometry) in order to examine Kernell's (1966) observations that (a) small motorneurons require a lower injected current to begin firing than do large motorneurons; but (b) the slope of the injected current-firing rate curve is less for small neurons than large. It is concluded that this behavior is not a simple consequence of the cell geometry, but requires different time courses for a slow conductance across the cell membrane. This observation is consistent with the experimentally observed differences in time course of afterhyperpolarization between large and small cells (Eccles et al., 1958). The models are used to study input-output relations for motorneurons when the input is a steady conductance change on the cell membrane, possibly in conjunction with an injected current. Comparisons are drawn with the experimental observations of Kernell (1965a, 1965b) and Chaplain and Schaupp (1973). It is shown that the observations of Henneman et al. (1965a, 1965b) and Milner-Brown et al. (1973a, 1973b) on the order of recruitment of motorneurons under conditions of natural stimulation may be explained by the following version of the size principle: a given input to a pool of motorneurons causes equivalent conductance changes on each cell of the pool—here equivalent means the input is distributed to corresponding portions of the soma-dendritic tree and is of equal magnitude in mhos. Hypotheses are offered as to how this distribution of input may be accomplished in Nature.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Biological cybernetics 27 (1977), S. 71-76 
    ISSN: 1432-0770
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Computer Science , Physics
    Notes: Abstract A model of the Renshaw spinal interneuron has been developed. The model consists of a nonhomogeneous cylinder divided into three compartments: dendrites, soma and axon initial segment (I.S). The soma and dendrites are represented as a cylindrical cable by the method of Rall (1962); anatomical data of Jankowska and Lindström (1971) from fluorescent dye injections were used to construct the cable. The soma and I.S. membranes are assumed to have Hodgkin-Huxley-like membrane activity. In comparison with our previous model of a tonic motorneuron (Traub, 1977), the Renshaw cell has a faster membrane time constant, faster Hodgkin-Huxley rate functions, α h and β h shifted to the right on the voltage axis, and no slow potassium conductance. With appropriate input conductances, the Renshaw cell model exhibits the following features: it develops very high frequency bursts (over 1000 impulses per s) which trail off over a period of 10–20 ms; the second spike has small amplitude and successive spikes develop progressively larger amplitudes. Comparisons are drawn with the experimental observations of Eccles et al. (1961) and Willis and Willis (`966). With this model, it is feasible to compute the steady firing rate for a large number of steady synaptic excitatory and inhibitory conductances by direct integration of the differential equations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Biological cybernetics 26 (1977), S. 159-167 
    ISSN: 1432-0770
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Computer Science , Physics
    Notes: Abstract A model is constructed of the motor units in the human first dorsal interosseus (FDI) muscle. Each motorneuron is simulated using a pseudo-steady-state model that omits the membrane capacity and the events underlying the action potential. Properties of individual twitches in the corresponding muscle units are based on the data of Milner-Brown et al. for the FDI, while the transduction between steady firing rate and percentage of maximum tension in a muscle unit is based on the work of Rack and Westbury on the cat soleus muscle. Since we are concerned only with small isometric tensions, we ignore effects due to muscle spindles and to recurrent inhibition. The model allows one to to determine, by simulation, the tension-time functions produced by different “programs” of input to an entire pool of 120 motorneurons. Thus, for example, in order to produce tension rising linearly with time, it suffices to deliver to each neuron in the pool a non-linearly rising conductance; the conductance can be the same for all neurons in the pool, but can NOT be scaled in proportion to the surface area of the respective neurons. The input may be delivered to any part of the neuron's dendritic tree, as long as the electrotonic distribution of input is the same for all the neurons. For a linearly rising force produced in this way, most of the motorneurons yield similar slopes for their frequency-force curves, as observed by Milner-Brown et al. To produce tensions greater than about 1 kg, mechanisms not included in this model must come into play, i.e. perhaps introduction of phasic motorneurons. The most important data needed to improve this model are sets of isometric frequency-force curves for muscle units of different twitch tensions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...