Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: A new AMPA receptor antagonist, Ro 48-8587, was characterized pharmacologically in vitro. It is highly potent and selective for AMPA receptors as shown by its effects on [3H]AMPA, [3H]kainate, and [3H]MK-801 binding to rat brain membranes and on AMPA- or NMDA-induced depolarization in rat cortical wedges. [3H]Ro 48-8587 bound with a high affinity (KD = 3 nM) to a single population of binding sites with a Bmax of 1 pmol/mg of protein in rat whole brain membranes. [3H]Ro 48-8587 binding to rat whole brain membranes was inhibited by several compounds with the following rank order of potency: Ro 48-8587 〉 6-nitro-7-sulphamoylbenzo[f]quinoxaline-2,3-dione (NBQX) 〉 YM 90K 〉 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) 〉 quisqualate 〉 AMPA 〉 glutamate 〉 kainate 〉 NMDA. The distribution and abundance of specific binding sites (∼95% of total) in sections of rat CNS, revealed by quantitative receptor radioautography and image analysis, indicated a very discrete localization. Highest binding values were observed in cortical layers (binding in layers 1 and 2 〉 binding in layers 3–6), hippocampal formation, striatum, dorsal septum, reticular thalamic nucleus, cerebellar molecular layer, and spinal cord dorsal horn. At 1 nM, the values for specific binding were highest in the cortical layers 1 and 2 and lowest in the brainstem (∼2.6 and 0.4 pmol/mg of protein, respectively). Ro 48-8587 is a potent and selective AMPA receptor antagonist with improved binding characteristics (higher affinity, selectivity, and specific binding) compared with those previously reported.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    European journal of neuroscience 5 (1993), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Rat cortical neurons grown in cell culture were exposed to 500 μM glutamate for 5 min during continuous current recording from cell-attached patches. The Ca2+-dependence and ion selectivity of the membrane channels activated during and after glutamate application were studied in inside-out patches. Glutamate blocked spontaneous action potential firing. In 77% of the experiments glutamate activated several types of ion channels indirectly, i.e. via a change of cytoplasmic factors. Channel activity did not disappear after removing glutamate from the bath. A K+ channel requiring intracellular calcium ([Ca2+]i) was activated in 44% of the experiments (conductance for inward currents in cell-attached patches 118 ± 6 pS;‘BK channel'). Another Ca2+-dependent channel permeable for Cl- (conductance for outward currents in cell-attached patches 72±17 pS), acetate and methanesulphonate appeared in 26% of the patches. Other K+ channels of smaller conductance were infrequently observed. During and after glutamate application the activity of the BK channel showed an initial increase followed by a transient decay and a second rise to a plateau, probably reflecting a similar time course of changes in [Ca2+]i. Both phases of increasing channel activity required the presence of extracellular Ca2+ suggesting that [Ca2+]i was mainly increased by Ca2+ influx. The N-methyl-d-aspartate (NMDA) antagonists dizocilpine (MK-801, 10 μM) and dl-2-amino-5-phosphonovaleric acid (AP5; 100 μM), added within 5 min after glutamate application, stopped BK channel activity and restored the spontaneous action potential firing. We conclude that the influx of Ca2+ through NMDA receptor channels causes a strong activation of Ca2+-dependent K+ channels, which is likely to result in pronounced loss of intracellular K+. NMDA receptor channels seem to remain active for a long time (〉10 min) after the end of glutamate application.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2013
    Keywords: Calcium channel ; Nerve cell culture ; Guanine-nucleotide-binding protein ; Guanosine triphosphate ; Patch clamp
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The barium current through voltage-dependent calcium channels was recorded from cultured rat cortical neurons with the whole-cell configuration of the patch-clamp technique. The maximal current evoked by depolarising pulses from −80 mV to 0 mV was divided into inactivating and non-inactivating fractions. During the first minutes of whole-cell recording, the amplitude of the inactivating fraction increased from less than 0.1 nA to an average value of 1 nA, whereas the amplitude of the non-inactivating component remained essentially the same. This increase in amplitude was prevented when the “perforated-patch technique” was used, suggesting that some intracellular factor that inhibited the barium current was lost or destroyed during conventional whole-cell experiments. When GTP[γ-S] or GTP was added to the pipette solution, no increase or only a weak rise of the inactivating current was seen, whereas GDP[β-S] accelerated its increase. The results suggest that some of the calcium channels expressed in cultured cortical neurons are inhibited by a G protein even in the absence of added neurotransmitter. The current increase observed during whole-cell recordings may be due to a loss of intracellular GTP and the subsequent inactivation of an inhibitory G protein.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...