Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    FEBS Letters 251 (1989), S. 237-240 
    ISSN: 0014-5793
    Keywords: (Pseudomonas) ; Anaerobic degradation ; Aromatic compound ; Benzoyl-CoA:(acceptor) 4-oxidoreductase (hydroxylating) ; Hydroxybenzoyl-CoA, 4- ; Phenol
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract We have previously described the isolation of the new bacterial species, Ralstonia/Burkholderia sp. strain DSM 6920, which grows with 6-methylnicotinate and regioselectively hydroxylates this substrate in the C2 position by the action of 6-methylnicotinate-2-oxidoreductase to yield 2-hydroxy-6-methylnicotinate (Tinschert et al. 1997). In the present study we show that this enzymatic activity can be used for the preparation of a series of hydroxylated heterocyclic carboxylic acid derivatives. The following products were obtained from the unhydroxylated educts by biotransformation using resting cells: 2-hydroxynicotinic acid, 2-hydroxy-6-methylnicotinic acid, 2-hydroxy-6-chloronicotinic acid, 2-hydroxy-5,6-dichloronicotinic acid, 3-hydroxypyrazine-2-carboxylic acid, 3-hydroxy-5-methylpyrazine-2-carboxylic acid and 3-hydroxy-5-chloropyrazine-2-carboxylic acid. Thus the respective educts were all regioselectively mono-hydroxylated at the carbon atom between the ring-nitrogen and the ring-carbon atom carrying the carboxyl group. In contrast to its relatively broad biotransformation abilities, the strain shows a limited heterocyclic nutritional spectrum. It could grow only with three of the seven transformed educts: 6-methylnicotinate, 2-hydroxy-6-methylnicotinate and 5-methylpyrazine-2-carboxylate. 2-Hydroxynicotinate, 2-hydroxy-6-chloronicotinate, 2-hydroxy-5,6-dichloronicotinate, 3-hydroxypyrazine-2-carboxylate and 3-hydroxy-5-chloropyrazine-2-carboxylate were not degraded by the strain. Therefore, unlike 6-methylnicotinate-2-oxidoreductase, which has a broad substrate spectrum, the second enzyme of the 6-methylnicotinate pathway seems to have a much more limited substrate range. Among 28 aromatic heterocyclic compounds tested as the sole source of carbon and energy, only pyridine-2,5-dicarboxylate was found as a further growth substrate, and this was degraded by a pathway which did not involve 6-methylnicotinate-2-oxidoreductase. To the best of our knowledge the microbial production of 2-hydroxy-6-chloronicotinic acid, 2-hydroxy-5,6-dichloronicotinic acid and 3-hydroxy-5-methylpyrazine-2-carboxylic acid have not been reported before. Strain DSM 6920 is so far the only known strain which allows the microbial production of both these compounds and 3-hydroxypyrazine-2-carboxylic acid and 3-hydroxy-5-chloroypyrazine-2-carboxylic acid.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 152 (1989), S. 273-279 
    ISSN: 1432-072X
    Keywords: Alicyclic compounds ; Denitrification ; Cyclohexanol dehydrogenase ; Cyclohexanone dehydrogenase ; 2-Cyclohexenone hydratase ; 3-Hydroxycyclohexanone dehydrogenase ; 1,3-Cyclohexanedione hydrolase ; Phenol ; Aromatization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The enzymes involved in the anaerobic degration of cyclohexanol were searched for in a denitrifying Pseudomonas species which metabolizes this alicyclic compound to CO2 anaerobically. All postulated enzyme activities were demonstrated in vitro with sufficient specific activities. Cyclohexanol dehydrogenase catalyzes the oxidation of the substrate to cyclohexanone. Cyclohexanone dehydrogenase oxidizes cyclohexanone to 2-cyclohexenone. 2-Cyclohexenone hydratase and 3-hydroxycyclohexanone dehydrogenase convert 2-cyclohexenone via 3-hydroxycyclohexanone into 1,3-cyclohexanedione. Finally, the dione is cleaved by 1,3-cyclohexanedione hydrolase into 5-oxocaproic acid. Some kinetic and regulatory properties of these enzymes were studied.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 148 (1987), S. 213-217 
    ISSN: 1432-072X
    Keywords: Anaerobic degradation ; Aromatic compounds ; Phenol ; Cresol ; 4-Hydroxybenzoate ; Denitrification ; Pseudomonas sp.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract From various oxic or anoxic habitats several strains of bacteria were isolated which in the absence of molecular oxygen oxidized phenol to CO2 with nitrate as the terminal electron acceptor. All strains grew in defined mineral salts medium; two of them were further characterized. The bacteria were facultatively anaerobic Gramnegative rods; metabolism was strictly oxidative with molecular oxygen, nitrate, or nitrite as electron acceptor. The isolates were tentatively identified as pseudomonads. Besides phenol many other benzene derivatives like cresols or aromatic acids were anaerobically oxidized in the presence of nitrate. While benzoate or 4-hydroxybenzoate was degraded both anaerobically and aerobically, phenol was oxidized under anaerobic conditions only. Reduced alicyclic compounds were not degraded. Preliminary evidence is presented that the first reaction in anaerobic phenol oxidation is phenol carboxylation to 4-hydroxybenzoate.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-072X
    Keywords: Key words 6-Methylnicotinic acid ; 2-Hydroxy-6-methylnicotinic acid ; Nicotinic acid ; 2-Hydroxynicotinic acid ; Ralstonia ; Burkholderia ; Paenibacillus ; Agrobacterium ; Rhizobium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract 2-Hydroxynicotinic acid is an important building block for herbicides and pharmaceuticals. Enrichment strategies to increase the chances of finding microorganisms capable of hydroxylating at the C2 position and to avoid the degradation of nicotinic acid via the usual intermediate, 6-hydroxynicotinic acid, were used. Three bacterial strains (Mena 23/3–3c, Mena 25/4–1, and Mena 25/ 4–3) were isolated from enrichment cultures with 6-methylnicotinic acid as the sole source of carbon and energy. Partial characterization of these strains indicated that they represent new bacterial species. All three strains completely degraded 6-methylnicotinic acid, and evidence is presented that the first step in the degradation pathway of strain Mena 23/3–3c is hydroxylation at the C2 position. Resting cells of this strain grown on 6-methylnicotinic acid also hydroxylated nicotinic acid at the C2 position, but did not further degrade the product. Strain Mena 23/ 3–3c showed the highest degree of 16S rRNA sequence similarity to members of the genera Ralstonia and Burkholderia.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...