Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-8450
    Source: Springer Online Journal Archives 1860-2000
    Topics: Electrical Engineering, Measurement and Control Technology
    Notes: Abstract Distributed dynamic identification and vibration control of high-performance flexible structures has drawn much attention in recent years. This article presents an analytical and finite-element study on a distributed piezoelectric sensor and distributed actuator coupled with flexible shells and plates. The integrated piezoelectric sensor/actuator can monitor the oscillation as well as actively control the structural vibration by the direct/converse piezoelectric effects, respectively. Based on Maxwell's equations and Love's assumptions, new theories on distributed sensing and active vibration control of a generic shell using the distributed piezoelectrics are derived. These theories can be easily simplified to account for plates, cylinders, beams, etc. A new piezoelectric finite element is also formulated using the variational principle and Hamilton's principle. A piezoelectric micropositioning device was first studied; analytical solutions are compared closely with experimental and finite-element results. Distributed vibration identification and control of a zero-curvature shell-a plate-are also investigated.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...