Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1619-7089
    Keywords: Key words: 2-[18F]fluoro-2-deoxy-d-glucose ; Positron emission tomography ; Neoplasms ; Glucose metabolism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract. To reduce the variability of the standardized uptake value (SUV) which is widely used to evaluate 2-[18F]fluoro-2-deoxy-d-glucose (FDG) uptake by neoplasms, net influx constant (Ki) was derived from SUV. The relationship Ki=SUV·kp·V 0, where k p is the plasma clearance rate and V 0 is the initial distribution volume of FDG, was utilized. A total of 71 plasma input functions were measured up to 60 min after intravenous injection of FDG in 55 patients and were analysed to obtain k p and V 0. SUV and V 0 were calculated based on either body weight or body surface area. To validate the Ki estimation, another group of eight patients with squamous cell carcinoma of the head and neck was included. Parametric images of the net influx constant were obtained by Patlak graphical analysis of dynamic positron emission tomography (PET) data and measured plasma input function. V 0 based on body weight was 0.1627±0.0329 (ml/g) and showed a weak negative correlation with body weight (y=0.23356–0.00138x, r=0.591). V 0 based on body surface area was 5540±871 (ml/m2) and had no significant correlation with body weight. k p at 50 min post injection was 0.03272±0.00243 (1/min), and had no correlation with the plasma glucose concentration. A highly significant positive correlation was noted between true Ki and estimated Ki based on both body weight (y=0.0033+1.0371x, r 2=0.897), and body surface area (y=0.0033+1.0351x, r 2=0.926). Ki, a better indicator of FDG uptake by tumour than SUV, is derivable non-invasively. Quantification of FDG uptake by Ki will aid standardization of diagnostic criteria of FDG PET oncology.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1619-7089
    Keywords: Dual-isotope single-photon emission tomography ; Triple-energy window method ; Iodine-123 BMIPP ; Thallium-201 ; Coronary artery disease
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract To improve the image quality in simultaneous dual-isotope single-photon emission tomography (SPET) with iodine-123 labelled 15-(p-iodophenyl)-3-methylpentadecanoic acid (BMIPP) and thallium-201, we applied the triple-energy window method JEW) for correction of the cross-talk and scatter artifact. Seventy-one patients with coronary artery disease were included.201T1 cross-talk into the123I acquisition window (group 1,n = 30) and123I cross-talk into the201Tl window (group 2,n = 41) were studied. In group 1,123I images were first obtained (single-isotope images), followed by201Tl injection and SPET acquisition using dual-isotope windows (dual-isotope images). In group 2, the order was reversed. The dual-isotope SPET images with and without TEW were compared with the single-isotope images. Qualitative evaluation was performed by scoring the segmental defect pattern. Detectability of the mismatched fatty acid metabolism on dual-isotope SPET was evaluated by receiver operating characteristic (ROC) curve analysis. Segmental defect pattern agreement between dual and corrected single images was significantly improved by TEW correction (P〈0.01). The agreement was particularly improved in segments with absence of uptake. There was no significant difference between TEW-corrected dual-isotope SPET and corresponding single-isotope SPET with regard to either % defect count or background activity. Mismatched fatty acid metabolism depicted by dual-isotope SPET predicted abnormal wall motion more accurately with TEW than without TEW. With TEW, a practical method for scatter and cross-talk correction in clinical settings, simultaneous dual123I-BMIPP/201Tl SPET is feasible for the assessment of myocardial perfusion/metabolism mismatch.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1619-7089
    Keywords: Key words: Dual-isotope single-photon emission tomography ; Triple-energy window method ; Iodine-123 BMIPP ; Thallium-201 ; Coronary artery disease
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract. To improve the image quality in simultaneous dual-isotope single-photon emission tomography (SPET) with iodine-123 labelled 15-(p-iodophenyl)-3-methylpentadecanoic acid (BMIPP) and thallium-201, we applied the triple-energy window method (TEW) for correction of the cross-talk and scatter artifact. Seventy-one patients with coronary artery disease were included. 201Tl cross-talk into the 123I acquisition window (group 1, n = 30) and 123I cross-talk into the 201Tl window (group 2, n = 41) were studied. In group 1, 123I images were first obtained (single-isotope images), followed by 201Tl injection and SPET acquisition using dual-isotope windows (dual-isotope images). In group 2, the order was reversed. The dual-isotope SPET images with and without TEW were compared with the single-isotope images. Qualitative evaluation was performed by scoring the segmental defect pattern. Detectability of the mismatched fatty acid metabolism on dual-isotope SPET was evaluated by receiver operating characteristic (ROC) curve analysis. Segmental defect pattern agreement between dual and corrected single images was significantly improved by TEW correction (P〈0.01). The agreement was particularly improved in segments with absence of uptake. There was no significant difference between TEW-corrected dual-isotope SPET and corresponding single-isotope SPET with regard to either % defect count or background activity. Mismatched fatty acid metabolism depicted by dual-isotope SPET predicted abnormal wall motion more accurately with TEW than without TEW. With TEW, a practical method for scatter and cross-talk correction in clinical settings, simultaneous dual 123I-BMIPP/201Tl SPET is feasible for the assessment of myocardial perfusion/metabolism mismatch.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...