Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of optimization theory and applications 77 (1993), S. 1-29 
    ISSN: 1573-2878
    Keywords: Flight mechanics ; windshear problems ; wind identification ; identification problems ; least-square problems ; aircraft accidents ; Flight Delta 191
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract This paper deals with the identification of the wind profile along a flight trajectory by means of a two-dimensional dynamic approach. In this approach, the wind velocity components are computed as the difference between the inertial velocity components and the airspeed components. The airspeed profile as well as the nominal thrust, drag, and lift profiles are obtained from the available DFDR measurements. The actual values of the thrust, drag, and lift are assumed to be proportional to the respective nominal values via multiplicative parameters, called the thrust, drag, and lift factors. The thrust, drag, and lift factors plus the inertial velocity components at impact are determined by matching the flight trajectory computed from DFDR data with the flight trajectory available from ATCR data. This leads to a least-square problem which is solved analytically under the additional requirement of closeness of the multiplicative factors to unity. Application of the 2D-dynamic approach to the case of Flight Delta 191 shows that, with reference to the last 180 sec before impact, the values of the multiplicative factors were 1.09, 0.84, and 0.89; this implies that the actual values of the thrust, drag, and lift were 9% above, 16% below, and 11% below their respective nominal values. For the last 60 sec before impact, the aircraft was subject to severe windshear, characterized by a horizontal wind velocity difference of 123 fps and a vertical wind velocity difference of 80 fps. The 2D-dynamic approach is applicable to the analysis of windshear accidents in take-off or landing, especially for the case of older-generation, shorter-range aircraft which do not carry the extensive instrumentation of newer-generation, longer-range aircraft. The same methodology can be extended to the investigation of aircraft accidents originating from causes other than windshear (e.g., icing, incorrect flap position, engine malfunction), above all if its precision is further increased by combining the 2D-dynamic approach and the 2D-kinematic approach.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of optimization theory and applications 55 (1987), S. 165-202 
    ISSN: 1573-2878
    Keywords: Flight mechanics ; landing ; abort landing ; penetration landing ; optimal trajectories ; optimal control ; windshear problems ; sequential gradient-restoration algorithm ; dual sequential gradient-restoration algorithm
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract This paper is concerned with optimal flight trajectories in the presence of windshear. The abort landing problem is considered with reference to flight in a vertical plane. It is assumed that, upon sensing that the airplane is in a windshear, the pilot increases the power setting at a constant time rate until maximum power setting is reached; afterward, the power setting is held constant. Hence, the only control is the angle of attack. Inequality constraints are imposed on both the angle of attack and its time derivative. The performance index being minimized is the peak value of the altitude drop. The resulting optimization problem is a minimax problem or Chebyshev problem of optimal control, which can be converted into a Bolza problem through suitable transformations. The Bolza problem is then solved employing the dual sequential gradient-restoration algorithm (DSGRA) for optimal control problems. Numerical results are obtained for several combinations of windshear intensities, initial altitudes, and power setting rates. For strong-to-severe windshears, the following conclusions are reached: (i) the optimal trajectory includes three branches: a descending flight branch, followed by a nearly horizontal flight branch, followed by an ascending flight branch after the aircraft has passed through the shear region; (ii) along an optimal trajectory, the point of minimum velocity is reached at about the time when the shear ends; (iii) the peak altitude drop depends on the windshear intensity, the initial altitude, and the power setting rate; it increases as the windshear intensity increases and the initial altitude increases; and it decreases as the power setting rate increases; (iv) the peak altitude drop of the optimal abort landing trajectory is less than the peak altitude drop of comparison trajectories, for example, the constant pitch guidance trajectory and the maximum angle of attack guidance trajectory; (v) the survival capability of the optimal abort landing trajectory in a severe windshear is superior to that of comparison trajectories, for example, the constant pitch guidance trajectory and the maximum angle of attack guidance trajectory.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of optimization theory and applications 97 (1998), S. 281-297 
    ISSN: 1573-2878
    Keywords: Nonlinear ship steering dynamics ; optimal control ; saturation ; slew rate limitation ; sequential gradient-restoration algorithm
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract The steering control of a ship during a course-changing maneuver is formulated as a Bolza optimal control problem, which is solved via the sequential gradient-restoration algorithm (SGRA). Nonlinear differential equations describing the yaw dynamics of a steering ship are employed as the differential constraints, and both amplitude and slew rate limits on the rudder are imposed. Two performance indices are minimized: one measures the time integral of the squared course deviation between the actual ship course and a target course; the other measures the time integral of the absolute course deviation. Numerical results indicate that a smooth transition from the initial set course to the target course is achievable, with a trade-off between the speed of response and the amount of course angle overshoot.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...