Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Macromolecules 22 (1989), S. 3168-3172 
    ISSN: 1520-5835
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 23 (1984), S. 1807-1810 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 45 (1992), S. 1857-1863 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Chemical structures of cellulose and chitosan dissolved in trifluoroacetic acid (TFA) and those of cellulose and chitosan films cast from their TFA solutions were studied by 13C-NMR and infrared (IR) spectroscopy. Cellulose is trifluoroacetylated selectively at the C6-hydroxyl groups in the TFA solution, and chitosan is dissolved in TFA by forming amine salts with TFA at the C2-amine groups. IR analyses of cellulose films cast from its TFA-acetic acid solutions showed that partly trifluoroacetylated cellulose in the solution state turns to partly acetylated cellulose in the solid state during evaporation of the solvents in air by the ester interchange. Chitosan films cast from its TFA-acetic acid solutions still have the amine salts with TFA. These acetyl groups in cellulose films and TFA in chitosan films are removable by soaking the films in 1N NaOH at room temperature for 1 day.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 45 (1992), S. 1873-1879 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Interactions between cellulose and chitosan molecules in cellulose-chitosan blend films, prepared using trifluoroacetic acid as a cosolvent for the two polysaccharides, were studied by X-ray diffraction and Raman analyses and by measurements of mechanical properties of the blend films. Crystallinity of cellulose in the blend films decreased with an increase in chitosan content. The blend films had tensile strengths of 45-100 MPa and Young's moduli of 2-7.5 GPa in dry states. These values had the maximum around 30% chitosan content in the blend films. These results suggested the presence of interactions between cellulose, chitosan, and water molecules in the films. However, Raman analysis suggested that cellulose and chitosan molecules in the blend films seemed to have the same secondary structures as those in 100% cellulose and 100% chitosan films, respectively. Thus, these results indicate the presence of interactions in the interfacial region between small domains of cellulose and chitosan. The presence of chitosan molecules may lead to decrease in the domain size of cellulose, and to increase in the interfacial region between cellulose and chitosan domains.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 50 (1993), S. 965-969 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A thin membrane of bacterial cellulose (BC) obtained from Acetobacter culture was tested for its performance as a dialysis membrane in aqueous systems. The BC membrane showed superior mechanical strength to that of a dialysis-grade regenerated cellulose membrane, allowing the use of a thinner membrane than the latter. As a result, the BC membrane gave higher permeation rates for poly(ethylene glycols) as probe solutes. The cutoff molecular weight of the original BC membrane, significantly greater than that of regenerated cellulose, could be modified by concentrated alkali treatments of the membrane. The nature of the change at the ultrastructural level caused by the alkali treatments was studied by X-ray diffraction and scanning electron microscopy. © 1993 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 16 (1972), S. 1749-1759 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Nuclear magnetic resonance absorption spectra of linter cellulose containing various amounts of water were studied to clarify the relation between the amount of absorbed water in cellulose fiber and the molecular motion in such a cellulose-water system. An amorphous cellulose sample was used for the sake of comparison. The changes in line width and second moment of the spectra were measured at various temperatures. From the variation with temperature of the first-derivative curves and the second moments, it has been inferred that the proton movement of absorbed water changes markedly over the approximate range 180°-200°K and that the absorbed water lowers the glass transition temperature of cellulose to room temperature.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...