Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 12 (2000), S. 2809-2818 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: In this paper electrohydrodynamic plumes are examined in the region far from the injecting electrode and the collector plate, for both two-dimensional and axisymmetric geometries. The relative importance of the conduction mechanisms (convection, drift and diffusion of electric charge) is analyzed. Diffusion turns out to be negligible compared to convection and drift for the experimental conditions. But the transverse drift (Coulomb repulsion) is of the same order of magnitude than convection. We find a set of three differential equations giving the evolution of the velocity at the center of the plume and the widths of the plume and the charged core inside. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 8 (1996), S. 2091-2096 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: In this paper we deal with self-similar thermal and electrohydrodynamic (EHD) plumes. The former arises from hot lines or points, whereas the latter arises when sharp metallic contours submerged in nonconducting liquids support high electrostatic potential, resulting in charge injection. Although the motive force is buoyancy in one case and Coulomb force in the other, it is shown that the solution for EHD plumes is the same as for thermal plumes in the limit of large Prandtl numbers. We present the analysis of axisymmetric plumes for large values of Prandtl number, and this analysis is subsequently applied to EHD plumes. The validity of the approximations for EHD plumes is discussed in the light of experimental data. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...