Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 19 (1996), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Wide variation exists in the growth responses of C3 plants to elevated CO2 levels. To investigate the role of photosynthetic feedback in this phenomenon, photosynthetic parameters and growth were measured for lines of Flaveria linearis with low, intermediate or high cytosolic fructose-1,6-bisphosphatase (cytFBPase) activity when grown at either 35 or 65 Pa CO2. The effects of pot size on the responses of these lines to elevated CO2 were also examined. Photosynthesis and growth of plants with low cytFBPase activity were less responsive to elevated CO2, and these plants had a reduced maximum potential for photosynthesis and growth. Plants with intermediate cytFBPase activity also showed a lower relative growth enhancement when grown at 65 Pa CO2. There was a significant pot size effect on photosynthesis and growth for line 85-1 (high cytFBPase). This effect was greatest for line 85-1 when grown at 35 Pa CO2, since these plants showed the greatest downward acclimation of photosynthesis when grown in small pots. There was a minimal pot size effect for line 84-9 (low cytFBPase), and this could be partly attributed to the reduced CO2 sensitivity of this line. It is proposed that the capacity for sucrose synthesis in C3, plants is partly responsible for their wide variation in CO2 responsiveness.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 22 (1999), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: 
D, deuterium
δD(NMR), chemical shift axis in a deuterium NMR spectrum
F6P, fructose-6-phosphate
G6P, glucose-6-phosphate
IRMS, isotope ratio mass spectrometry
NMR, nuclear magnetic resonance
PGI, phosphoglucose isomerase

Intramolecular deuterium distributions of the carbon-bound hydrogens of glucose were measured using deuterium nuclear magnetic resonance. Glucose isolated from leaf starch of common bean (Phaseolus vulgaris cv. Linden) or spinach (Spinacia oleracea cv. Giant nobel) was depleted in deuterium in the C(2) position, compared with glucose isolated from leaf sucrose or bean endosperm starch. In beans, the depletion of C(2) was independent of the light intensity during growth (150 or 700 μmol photons s–1 m–2). The ratio of glucose-6-phosphate to fructose-6-phosphate ([G6P]/[F6P]) in bean chloroplasts was 0·9 in high light, indicating that the phosphoglucose isomerase reaction was not in equilibrium ([G6P]/[F6P]) ≈ 3). This implies that the kinetic isotope effect of phosphoglucose isomerase depleted deuterium in the C(2) position of G6P. Because the depletion was the same, the chloroplastic ([G6P]/[F6P]) ratio was in disequilibrium irrespective of the light intensity. If the ([G6P]/[F6P]) ratio was in equilibrium, a large chloroplastic pool of G6P would be unavailable for regeneration of ribulose-1,5-bisphospate. We argue that chloroplast phosphoglucose isomerase activity is regulated to avoid this. The deuterium depletion of C(2) explains the known low overall deuterium abundance of leaf starch. This example shows that measurements of intramolecular deuterium distributions can be essential to understand overall deuterium abundances of plant material.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...