Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1550-7408
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: . The cortical membrane proteins of three gregarine and one coccidian species were compared using sodium dodecyl sulfate/polyacrylamide-gel electrophoresis. About 30 proteins were identified in the ghosts of Gregarina blaberae and G. garnhami and 20 in G. rhyparobiae ghosts and Sarcocystis tenella pellicles. No protein with the electrophoretic mobility of muscular actin was present in the ghosts of the sporozoan species under study. Each species possessed a characteristic electrophoretic pattern; no protein was present simultaneously in the four sporozoan species and only one protein band with a similar electrophoretic mobility was found in the three gregarine species (52 Kd protein). Two G. garnhami subpopulations living in Locusta migratoria and Schistocerca gregaria exhibited the same ghost protein pattern. Thus, large differences were observed between species and not within species, and the protein electrophoretic analysis appears to be a powerful tool for taxonomic investigations in gregarines. Gregarina blaberae and G. garnhami glycoconjugates were compared after periodate/Schiff staining of the polyacrylamide gel slabs. Several glycoconjugates were reported to belong to the cytoplasmic fraction; and, in view of cytochemical and ultrastructural data, a contribution of these glycocomponents to the secretion of a mucus is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    The @journal of eukaryotic microbiology 22 (1975), S. 0 
    ISSN: 1550-7408
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Nous proposons le genre nouveau Nosemoides gen. n. pour l'espèce microsporidienne auparavant classée dans le genre Nosema, comme N. vivieri Vinckier, Devauchelle & Prensier, 1970. Ainsi, nous proposons Nosemoides vivieri (Vinckier, Devauchelle & Prensier) comb. nov. pour cette espèce, hyperparasite d'une grégarine monocystidée intestinale du némerte Lineus viridis (Fabricius) Johnston. L'étude ultrastructurale de N. vivieri nous a permis de préciser l'organitogenèse de la spore de ce protozoaire. Nous avons pu suivre en particulier, l'évolution de vésicules de type “golgien” et voir ainsi leur rôle dans la genèse du filament polaire.Les stades végétatifs uninucléés (schizontes) se divisent plusieurs fois pour donner naissance aux sporoblastes. Puis chaque sporoblaste évolue en une seule spore.Dans le jeune sporoblaste apparaît, près du noyau, un amas de petites vésicules à contenu plus ou moins dense assimilable à un appareil de Golgi primitif. Ces vésicules de type “golgien” sont à l'origine du filament polaire dont l'élaboration semble débuter par l'apparition dans le cytoplasme, d'une grande “vésicule” limitée par une membrane de type unitaire, et située entre le noyau, dans une dépression de l'enveloppe nucléaire, et les vésicules “golgiennes.” Cette vésicule périnucléaire deviendra le sac polaire. Le filament polaire se forme par coalescence de ces vésicules “golgiennes” qui se disposent en manchon cylindrique entourant la zone centrale dense du filament. D'environ 110 nm de diamètre, il est constitué de 3 zones concentriques: une zone externe limitée de part et d'autre par une membrane unitaire, puis vers le centre une zone claire et au milieu un axe opaque aux électrons. Lorsque le filament polaire est ainsi élaboré, le sac polaire dont le contenu s'opacifie de plus en plus, migre au pôle antérieur de la cellule tandis que le noyau est repoussé dans la moitié postérieure. Le polaroplaste lamellaire se différencie alors, englobant de nombreuses petites vésicules constituant le polaroplaste vésiculaire. Au pôle du sporoblaste opposé au sac polaire se forme, également par coalescence de vésicules d'allure golgienne, la vacuole postérieure. Le filament polaire de 90–95 nm de diamètre n'est plus limité que par une seule membrane de type unitaire. En fin de sporogenèese. la paroi du sporoblaste, qui a pris une forme ovoide, s'épaissit: la spore a acquis sa structure définitive.Dans la discussion, après avoir rappelé les caractéristiques essentielles de la cytologie du sporoblaste et de l'organitogenèse de la spore de N. vivieri et souligné les points encore obscurs, la position systématique du Nosemoides gen. n. est examinée.〈section xml:id="abs1-2"〉〈title type="main"〉SYNOPSISA new genus, Nosemoides gen. nov. is proposed for the microsporidan species previously placed in the genus Nosema, as N. vivieri Vinckier, Devauchelle & Prensier, 1970. Thus Nosemoides vivieri (Vinckier, Devauchelle & Prensier) comb. nov. is established for this species, hyperparasitic in an intestinal monocystid gregarine of the nemertean Lineus viridis (Fabricius) Johnston. An ultrastructural study of N. vivieri allowed us to describe in detail its sporogony. In particular, we were able to follow the development of Golgi-type vesicles and to observe their role in the formation of the polar filament.The uninucleate vegetative stages (schizonts) divide several times before giving rise to sporoblasts, each of which develops into a single spore.In the young sporoblasts there appears near the nucleus an accumulation of small vesicles, with more or less dense concents, comparable to a primitive Golgi apparatus. These Golgi-type vesicles are the source of the polar filament, whose formation appears to commence with the appearance in the cytoplasm of a large “vesicle” delimited by a unit-type membrane. This vesicle, lodged in a depression of the nuclear envelope, is situated between the nucleus and the Golgi-like vesicles. The perinuclear vesicle becomes the polar sac. The polar filament is formed by coalescence of the Golgi-like vesicles which arrange themselves into a cylindrical sleeve surrounding the central dense zone of the filament. The sleeve, ∼ 110 nm in diameter, consists of 3 concentric zones: an external zone, limited on both sides by unit membranes; an intermediate clear zone; and a central electron-dense core. When the polar filament is thus elaborated, the polar sac, whose contents become progressively more opaque, migrates to the anterior pole of the cell, while the nucleus is pushed into the posterior part. The lamellar polaroplast becomes differentiated, encircling numerous small vesicles that constitute the vesicular polaroplast. At the pole of the sporoblast opposite to the sac there forms a posterior vacuole, also by coalescence of the Golgi-type vesicles. The polar filament, 90–95 nm in diameter, is limited by a single unit-type membrane. At the end of sporogenesis, the sporoblast wall, which has assumed an ovoid shape, thickens–the spore has acquired its definitive structure.The essential characteristics of sporoblast cytology and the development of the spore are recapitulated in the discussion which is concerned also with the still obscure points of this development. Finally the systematic position of Nosemoides gen. n. is examined.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    The @journal of eukaryotic microbiology 22 (1975), S. 0 
    ISSN: 1550-7408
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: La morphologie de la grégarine Didymophyes gigantea, au cours de la croissance et de l'évolution du trophozoïte et de la syzygie, est étudiée en microscopie photonique et en microscopie électronique à balayage. Certaines observations sont également illustrées par quelques micrographies en microscopie électronique à transmission.Les premiers stades de développement de cette grégarine polycystidée ne possèdant cependant pas de septum; celui-ci n'apparaîtra qu'au cours de la croissance du jeune trophozoïte. Plus tard, les trophozoïte se détachent de la cellule-hôte pour s'as-socier en syzygies généralement constituées de 2 gamontes. Des syzygies multiples, c'est-à-dire à plus de 2 individus sont fréquemment observées. Immédiatement après l'association de 2 trophozoïtes, le satellite, dont le septum se résorbe, semble pénétrer quelque peu dans l'extrémité postérieure du primite, tandis que le protomérite de ce dernier va voir son apex se transformer en une sorte de coiffe sillonnée radialement. L'epicyte de cette grégarine est différencié en un système régulier de plis longitudinaux. Au niveau du deutomérite les plis sont animés de mouvements ondulatoires permettant des mouvements de glissement du parasite. Les plis du protomérite, qui ne semblent pas intervenir dans le déplacement par translation du parasite, sont rectilignes. Lorsque le septum proto-deutoméritique du satellite disparaît, les plis initialement rectilignes du protomérite deviennent également ondulatoires. Des excroissances des plis épicytaires apparaissent au niveau de l'etranglement marquant la limite proto-deutomérite et de la cloison primite-satellite. Plus tard, en fin d'évolution, il s'en forme également sur tout le deutomérite. Aucun noyau n'a jamais été observé, in vivo, dans la grégarine adulte, le jeune trophozoïte, ou même les 2 gamontes d'une syzygie. Cependant sur coupes fines en microscopie électronique à transmission, une grande quantité de très petits noyaux ont été découverts.La motilité de cette grégarine semble donc être due à 3 systèmes différents: (a) les plis ondulatoires de l'épicyte; (b) les myonèmes annulaires ectoplasmiques; (c) l'important flux cytoplasmique.Les relations entre les cycles de l'hôte et du parasite, les divisions nucléaires progamiques, l'origine du déplacement par translation de la grégarine et des contractions péristaltiques, font également l'objet d'une discussion.〈section xml:id="abs1-2"〉〈title type="main"〉SYNOPSISStructure of the gregarine Didymophyes gigantea during syzygy and growth and development of the trophozoite, was studied by light microscopy and scanning electron microscopy. Some observations are illustrated also by a few micrographs obtained by transmission electron microscopy.The first developmental stages of this cephaline gregarine do not have a septum, which appears only during growth of the young trophozoite. Later, the trophozoites detach themselves from the host cell to become associated in syzygy which usually involves 2 gamonts. Multiple syzygies, i.e. those involving more than 2 animals are frequently observed. Immediately after association of 2 trophozoites the satellite, whose septum is resorbed, appears to penetrate the posterior extremity of the primite for some distance, while the latter's protomerite has its apex transformed into a kind of radially furrowed cap. The epicyte (surface) of this gregarine is differentiated into a system of regular longitudinal folds. At the level of the deutomerite the folds exhibit undulatory movements which allow gliding movements of the parasite. The folds of the protomerite, which does not participate in the movement of the parasite, are rectilinear. When the proto-deutomeritic septum of the satellite disappears, the initially rectilinear folds of the protomerite also become undulatory. Excrescences of the epicytic folds appear at the level of the narrowed areas marking the proto-deutomerite junction and the primite-satellite septum. Toward the end of development they form over the entire deutomerite. No nucleus has ever been observed in living mature gregarines, young trophozoites, or in 2 gamonts in syzygy. A large number of very small nuclei was discovered, however, in thin sections examined by transmission electron microscopy.Motility of the gregarine appears to depend upon 3 different systems: (a) the undulating epicytic folds; (b) the ectoplasmic annular myonemes; (c) the cytoplasmic streaming.The relationships between the host and parasite cycles, the “progamic” nuclear divisions, and the origin of movement and peristaltic contractions of the gregarine are also discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Nuclear Engineering and Design 150 (1994), S. 441-452 
    ISSN: 0029-5493
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0721-3115
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The development and investigation of reactive sandwich targets and their interaction with shaped charge jets is one of the many research areas, where important contributions were made by Manfred Held. Such reactive sandwiches are known to be extremely effective against jets, but have a number of disadvantages.In this work, the interaction of the copper jet from a shaped charge calibre 136 mm with a double sandwich system, each sandwich consisting of a non-reacting layer between outer steel plates, is investigated. In 10 experiments with identical geometrical setup, only the material of the non-reacting layer is changed. Using flash X-ray pictures, the interaction of the jet with the sandwich system is investigated. Evaluation of these pictures as well as the comparison of the measured residual penetrations behind the sandwich target clearly demonstrate the influence of the material of the inner sandwich layer. The deformation and movement of the steel plates, caused by the penetrating jet, can be seen in the X-ray pictures. It is shown that it is possible to distort a shaped charge jet so that its penetration capability behind the target is reduced to a minimum.A fully three-dimensional hydrocode simulation of the experiments enabled the jet/sandwich interaction and steel plate deformation and rupture to be studied in detail.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...