Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Copenhagen : International Union of Crystallography (IUCr)
    Acta crystallographica 57 (2001), S. 813-828 
    ISSN: 1399-0047
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: The program SFCHECK [Vaguine et al. (1999), Acta Cryst. D55, 191–205] is used to survey the quality of the structure-factor data and the agreement of those data with the atomic coordinates in 105 nucleic acid crystal structures for which structure-factor amplitudes have been deposited in the Nucleic Acid Database [NDB; Berman et al. (1992), Biophys. J. 63, 751–759]. Nucleic acid structures present a particular challenge for structure-quality evaluations. The majority of these structures, and DNA molecules in particular, have been solved by molecular replacement of the double-helical motif, whose high degree of symmetry can lead to problems in positioning the molecule in the unit cell. In this paper, the overall quality of each structure was evaluated using parameters such as the R factor, the correlation coefficient and various atomic error estimates. In addition, each structure is characterized by the average values of several local quality indicators, which include the atomic displacement, the density correlation, the B factor and the density index. The latter parameter measures the relative electron-density level at the atomic position. In order to assess the quality of the model in specific regions, the same local quality indicators are also surveyed for individual groups of atoms in each structure. Several of the global quality indicators are found to vary linearly with resolution and less than a dozen structures are found to exhibit values significantly different from the mean for these indicators, showing that the quality of the nucleic acid structures tends to be rather uniform. Analysis of the mutual dependence of the values of different local quality indicators, computed for individual residues and atom groups, reveals that these indicators essentially complement each other and are not redundant with the B factor. Using several of these indicators, it was found that the atomic coordinates of the nucleic acid bases tend to be better defined than those of the backbone. One of the local indicators, the density index, is particularly useful in spotting regions of the model that fit poorly in the electron density. Using this parameter, the quality of crystallographic water positions in the analyzed structures was surveyed and it was found that a sizable fraction of these positions have poorly defined electron density and may therefore not be reliable. The possibility that cases of poorly positioned water molecules are symptomatic of more widespread problems with the structure as a whole is also raised.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Copenhagen : International Union of Crystallography (IUCr)
    Acta crystallographica 55 (1999), S. 191-205 
    ISSN: 1399-0047
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: In this paper we present SFCHECK, a stand-alone software package that features a unified set of procedures for evaluating the structure-factor data obtained from X-ray diffraction experiments and for assessing the agreement of the atomic coordinates with these data. The evaluation is performed completely automatically, and produces a concise PostScript pictorial output similar to that of PROCHECK [Laskowski, MacArthur, Moss & Thornton (1993). J. Appl. Cryst. 26, 283–291], greatly facilitating visual inspection of the results. The required inputs are the structure-factor amplitudes and the atomic coordinates. Having those, the program summarizes relevant information on the deposited structure factors and evaluates their quality using criteria such as data completeness, structure-factor uncertainty and the optical resolution computed from the Patterson origin peak. The dependence of various parameters on the nominal resolution (d spacing) is also given. To evaluate the global agreement of the atomic model with the experimental data, the program recomputes the R factor, the correlation coefficient between observed and calculated structure-factor amplitudes and Rfree (when appropriate). In addition, it gives several estimates of the average error in the atomic coordinates. The local agreement between the model and the electron-density map is evaluated on a per-residue basis, considering separately the macromolecule backbone and side-chain atoms, as well as solvent atoms and heterogroups. Among the criteria are the normalized average atomic displacement, the local density correlation coefficient and the polymer chain connectivity. The possibility of computing these criteria using the omit-map procedure is also provided. The described software should be a valuable tool in monitoring the refinement procedure and in assessing structures deposited in databases.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...