Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2427
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: 〈list style="custom"〉1We wanted to determine if changes in algae in the Everglades were due to increased phosphorus (P) loading. Epiphytic algae, water chemistry, and surface sediment chemistry were characterized from 32 sloughs along a P gradient in the Everglades and changes in the algal assemblages along the P gradient were compared with those along an experimental P gradient of in situ mesocosms. The sloughs are the wettest open water habitats characterized by floating and submerged aquatic plants in the Everglades.2Algal species composition was much more sensitive to P concentration than algal biomass. The diatom species variance among sloughs, captured by 1st ordination axis, was more highly correlated with total P (TP) in surface sediments (r = - 0.79), than soluble reactive P (SRP) (r = - 0.08) and TP (r = - 0.48) in the water column. Algal biomass (µg chl a cm-2) was not significantly correlated with P (SRP: r = 0.22, TP: r = 0.19, sediment TP: r = 0.07) along the P gradient in the Everglades. Cluster analysis classified diatom species assemblages in 32 sloughs into three groups (TWIN I, II, III), which corresponded to three zones along the P gradient. Dominant diatom species shifted from Mastogloia smithii (40.3%), Cymbella scotica (22.3%), and Fragilaria synegrotesca (21.8%) in TWIN I to Nitzschia amphibia (22.4%) and C. microcephala (12.4%) in TWIN III. TP in surface sediments and TP in epiphyton assemblages increased 4- and 5-fold from TWIN I to TWIN III, respectively.3Patterns in epiphytic assemblages along the experimental P gradient in the mesocosms were very similar to those along the Everglades P gradient. Shannon diversity indices and species richness significantly increased along both P gradients. TN : TP ratio in epiphyton assemblages significantly decreased as sediment TP increased along both P gradient. Ordination analysis showed that diatom assemblages in the impacted zone (TWIN III) were ordinated closely to the assemblages from the highest P treatments in the mesocosms. The assemblages from the less impacted zone (TWIN I) were ordinated closely to the assemblages from controls in the mesocosms.4Concurrence between results of our survey and experiments suggest that changes in epiphytic assemblages along the P gradient in the Everglades are caused by increases in P concentrations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-0417
    Keywords: diatoms ; Everglades ; phosphorus ; wetland ; calibration ; multivariate ; Florida
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences
    Notes: Abstract The relationship between diatom taxa preserved in surface soils and environmental variables at 31 sites in Water Conservation Area 2A (WCA-2A) of the Florida Everglades was explored using multivariate analyses. Surface soils were collected along a phosphorus (P) gradient and analyzed for diatoms, total P, % nitrogen (N), %carbon (C), calcium (Ca), and biogenic silica (BSi). Phosphorus varied from 315-1781 μg g-1, and was not found to be correlated with the other geochemical variables. Canonical correspondence analysis (CCA) was used to examine which environmental variables correlated most closely with the distributions in diatom taxa. Canonical correspondence analysis with forward selection, constrained and partial CCA, and Monte Carlo permutation tests of significance show the most significant changes in diatom assemblages along the P gradient (p 〈 0.01), with additional species differences correlated with soil C, N, Ca, and BSi. Weighted-averaging (WA) regression and calibration models of diatom assemblages to P and BSi were developed. The diatom-based inference model for soil [P] had a high apparent r2 (0.86) with RMSEboot = 218 μg g-1. Indicator diatom species identified by assessing species WA optima and WA tolerance to [P], such as Nitzschia amphibia and N. palea for high [P] (~1300-1400 μ g-1) and Achnanthes minutissima var. scotica and Mastogloia smithii for low [P] (~400-600 μg g-1), may be useful as monitoring tools for eutrophication in WCA-2A as well as other areas of the Everglades. Diatom assemblages analyzed by cluster analysis were related to location within WCA-2A, and dominant taxa within clusters are discussed in relation to the geochemical variables measured as well as hydrology and pH. Diversity of diatom assemblages and a ‘Disturbance Index’ based on diatom data are discussed in relation to the historically P-limited Everglades ecosystem. Diatom assemblages should be very useful for reconstructions of [P] through time in the Florida Everglades, provided diatoms are well preserved in soil cores.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5117
    Keywords: nitrogen ; phosphorus ; pore water ; macrophyte ; floodplain ; Paraná River
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Inorganic nitrogen and soluble reactive phosphate (o-P) concentrations were measured in the water of a marsh and in its interstitial water at two sites, and in the river water of a floodplain marsh of the Lower Paraná River. These values were compared with the N and P concentration in sediments and macrophyte biomass in order to assess nutrient availability, fate and storage capacity. High variability was found in the interstitital water using a 1 cm resolution device. Nitrate was never detected in the pore water. Depth averaged NH4 + concentrations in the upper 30 cm layer often ranged from N = 1.5 to 1.8 mg l-1, but showed a pronounced minimum (0.5–0.7 mg l-1), close to (March 95), or relatively soon after (May 94) the end of the macrophyte growing season. Soluble phosphate showed a large variation between P = 0.1–1.1 mg l-1 without any discernible seasonal pattern. NH4 + depletion in the pore water concentration and low N/P ratios (3.7 by weight) within the macrophyte biomass at the end of the growing period suggest that available N limits plant growth. NH4 + and o-P concentrations were 35 and 7 times higher, respectively, in the pore water than in the overlying marsh, suggesting a permanent flux of nutrients from the sediments. o-P accumulate in the marsh leading to higher concentrations than in the incoming river. NH4 + did not accumulate in the marsh, and no significant differences were observed between the river and the marsh water, while the NO3 - contributed by the river water was depleted within the marsh, caused probably by coupled nitrification-denitrification at the sediment–water interface. Although an order of magnitude smaller, the pore water pool can supply enough nutrients to build up the macrophyte biomass pool, but only if a fast turnover is attained. The Paraná floodplain marsh retains a large amount of nutrients being stored mainly in the sediment compartment.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...