Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2109
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: The objective of this study was to assess whether high-pressure injection of air into the brain of African catfish (Clarias gariepinus) could render the animal unconscious and insensible immediately and permanently. In the study, 48 African catfish with a live weight of 900–1900 g were restrained and equipped with EEG and ECG electrodes and then stunned. The catfish were stunned mechanically using a captive needle pistol. The pressure to shoot the needle was 8 bar and that to inject the air was 3 bar for 1.5 s. The catfish behaviour was observed during and after stunning. τ and δ waves and spikes, which precede a stoppage in brain activity as measured on the EEG, were used as indices for the measurement of immediate induction of unconsciousness and insensibility In 23 of 42 fish, an iso-electric line was observed after an average of 13.4 s, while in the remaining fish the τ and δ waves and spikes remained on the EEG during the recording period. In all cases, the ECG showed an irregular heart rate with fibrillation and extra systolae. Moreover, the configuration showed ischaemia. Before the captive needle stunning, free-swimming fish (n=7) explored the tank for an average of 21±12 s before lying down at the bottom. After stunning, they showed clonic uncoordinated swimming movements. The movements stopped after an average of 38±50 s. In another group (n=7) that was stunned and subsequently placed in ice water, clonic cramps were observed in two out of seven animals. When taking into account the number of animals with a reliable EEG (n=42) and using 95% confidence intervals, it was concluded that at least 93% of the catfish were effectively stunned using a correctly positioned captive needle pistol. Furthermore, it is recommended to immobilize the stunned fish by chilling, as the post-stun clonic cramps may hinder gutting and filleting.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science, Ltd
    Aquaculture research 33 (2002), S. 0 
    ISSN: 1365-2109
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: The current procedures for slaughtering European eels (Anguilla anguilla) for food are very slow and cause suffering. Although there is little legislation for protecting the welfare of fish at slaughter, the legislation covering farmed mammals and birds at slaughter is well defined, requiring that these animals be rendered insensible immediately or without fear or pain prior to being killed. For many mammals and birds this can be achieved using an electrical stun, which is then followed by a procedure that actually kills them, such as exsanguination. This paper reports the investigation of the possibility of using electricity to stun eels, rendering them insensible to pain. Using 1 s duration alternating currents at 50 Hz applied directly across the head of the fish, it was shown that it was possible to stun the fish with currents of 0.1 A and above. Increasing the applied current increased the length of the period of the stun. When the duration of the application of the current was increased to 30 s it was found that the fish could be killed using currents between 0.50 A and 0.95 A. These results show that it is possible to use electricity to instantly stun eels and also to kill them by using longer duration currents. The use of preslaughter electrical stunning at slaughter could allow the welfare of these fish at slaughter to be improved greatly.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2109
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: The overall objective was to evaluate the suitability of electronarcosis as a stunning method for farmed eels. In the first experiment the minimum electrical current needed to induce a general epileptiform insult by head-only stunning was assessed. The individual eels (n = 40) with a live weight of 700–800 g were fixed in a specially designed re-strainer. The EEG (electroencephalogram) and ECG (electrocardiogram) recordings, observation of behaviour and responses to pain stimuli were used to assess unconsciousness, insensibility and cardiac function. The applied current of 150, 200 or 250 V, 50 Hz, AC was delivered via scissor-model stunning tongs for approximately 1 s. A general epileptiform insult was observed in 31 eels for which a successful EEG recording was obtained, using 255 ± 4 V, 545 ± 32 mA, for 1.2 ± 0.2 s. The general epileptiform insult as measured on the EEG was characterized by a tonic/clonic phase and an exhaustion phase. The behaviour showed one phase: tonic cramps alternated by clonic ones. The heart rate was 22 ± 8 beats min−1 (n = 23) prior to stunning. After stunning the ECG revealed fibrillation. In the second experiment the behaviour of seven individual eels able to move freely in water was observed after head-only stunning (250 V). Two phases were distinguished. Limited tonic and clonic cramps combined with backward swimming were followed by heavy clonic cramps combined with unco-ordinated movements such as jumping out of the water. A distinct exhaustion phase was not observed in all animals. In the third experiment a head-to-tail electrical method was examined in 15 eels for rendering the eels unconscious and insensitive prior to slaughter. They were stunned by applying 253 V for 3 s followed by 50 V for 5 min. In the fourth experiment nine eels were head-only stunned with 260 V for 1 s immediately followed by 50 V for 5 min applied from head to tail. Results obtained in these two experiments were similar. After stunning no brain activity and no responses to pain stimuli on the EEG were observed and the ECG showed ventricular extra systolae. It was observed that it might take 60 ± 25 min or longer for a complete recovery. It can be concluded that for effective electrical stunning of eels with a weight of 700–800 g an average current of 545 ± 32 mA (at approximate 250 V, 50 Hz AC) is needed. In this case, within a confidence level of 95% at least 91% of the eels are effectively stunned (n = 31). Therefore, it is recommended to increase the minimum current for an effective stun in practice to 600 mA. Further research is needed to determine the conditions to induce permanent unconsciousness and insensibility of the eels to protect the animals at slaughter.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1365-2109
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: It was observed that farmed eels could be rendered unconscious and insensible instantaneously by passing an electrical current through fresh water. The general epileptiform insult on the EEG was characterized by a tonic/clonic and an exhaustion phase. After stunning, the ECG (electro-cardiogram) revealed fibrillation. The electrical stunning parameters were on average 194 ± 4 V and 0.636 ± 0.040 A/dm2 for 1.6 ± 0.4 s. Within a confidence level of 95%%, taking into account the number of animals with a reliable EEG (n = 29), at least 93% of all eels are effectively stunned in fresh water by an average current of 0.636 ± 0.040 A/dm2. The behaviour of groups of five eels, which were able to move freely in the water was observed before and after stunning with 50 V and 0.17 A/dm2. After 3-s stunning, two eels were turned upside down. They changed to a normal position after 10 and 13 s respectively. Subsequently, all eels were very active in swimming behaviour and stopped swimming after 75 s. When stunned for a longer duration, all eels were turned upside down and stopped breathing for a limited period of time. In the last experiment the eels were stunned in fresh water (500 μS) with a voltage of 200 V for approximately 1 s, which was followed by 50 V for 5 min. As soon as the stunning started the water was de-oxygenated by flushing nitrogen to kill the eels by suffocation during the period of unconsciousness and insensitivity. The oxygen saturation decreased from 74 ± 10 to 23 ± 11% at 22 °C. After stunning no brain activity and no responses to pain stimuli were observed on the EEG. The heart rate increased (P 〈 0.05) after stunning, which was followed by a significant decrease. Only 1 out of 18 eels returned partially from upside down to a normal position 2 h after stunning; however, the eel did not respond to pain stimuli in behaviour. The developed stunning procedure can be recommended for humane slaughter of 50-kg batches of eels.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...