Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Journal of Hydrology 148 (1993), S. 93-107 
    ISSN: 0022-1694
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Journal of Contaminant Hydrology 17 (1994), S. 91-109 
    ISSN: 0169-7722
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Geography , Geosciences
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 27 (1991), S. 233-243 
    ISSN: 1573-0867
    Keywords: Nitrogen transport ; crop production ; moisture retention characteristic ; ammonia adsorption ; simulation ; organic N transformations
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The SWATNIT model [26], predicting water and nitrogen transport in cropped soils, was evaluated on experimental data of winter wheat for different N treatments. The experiments were monitored at three different locations on different soil types in the Netherlands. Crop growth was simulated using the SUCROS model [11] which was integrated in the SWATNIT model. Both water and nitrogen stress were incorporated. Except for the soil hydraulic properties, all model parameters were taken from literature. The model performance was evaluated on its capability to predict soil moisture profiles, nitrate and ammonia profiles, the time course of simulated total dry matter production and LAI; and crop N-uptake. Results for the simulations of the soil moisture profile indicate that the soil hydraulic properties did not reflect the actual physical behaviour of the soil with respect to soil moisture. Good agreement is found between the measured and simulated nitrate and ammonia profiles. The simulation of the nitrate content of the top layer at Bouwing was improved by increasing the NH 4 + -N-distribution coefficient thereby improving the simulation of the NH 4 + -N-content in this layer. Deviations between simulated and measured nitrate concentrations also occurred in the bottom layers (60–100 cm) of the soil profile. The phreatic ground water might influence the nitrate concentrations in the bottom layers. Concerning crop growth modelling, improvements are needed with respect to the partitioning of total dry matter production over the different plant organs in function of the stress, the calculation of the nitrogen stress and the total nitrogen uptake of the crop through a better estimate of the N-demand of the different plant organs.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Soil Science Society of America journal 62 (1998), S. 83-89 
    ISSN: 1435-0661
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: ws ) in a series-coupled pathway with electrical conductivity in the mobile phase of soil solution (ECwc) in a continuous pathway. We related bulk soil electrical conductivity (ECa) to electrical conductivity of soil water (ECw), assuming constant ECws during breakthrough. This resulted in a linear relationship between ECa and ECw. The linear relation, termed here simple linear model (SLM), was tested using experimental data obtained from soil columns. Laboratory breakthrough experiments were performed on short and large columns by applying a pulse input of solute. At the end of breakthrough, separate calibration experiments were performed using a step input of solute. Both RM and SLM were compared with the step input calibration method (SIM) as a reference method. Results show that the SLM is better than RM in terms of mass recovery. In addition, parameters of the solute transport model were not affected within 20% of uncertainty in the slope coefficient of the SLM when compared with the reference method. Advantages of the SLM are that it has an identical equation form to the SIM but less effort is required, especially for soil columns showing preferential flow, and it can be readily applied to field conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...