Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2013
    Keywords: Spontaneously hypertensive rat ; Myocardial hypertrophy ; Ischemia ; Reperfusion ; Noreflow ; Adenine nucleotides ; Glycogen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The ability to resist transient ischemia was studied in isolated hearts of 18 months old spontaneously hypertensive (SHR) and Wistar-Kyoto (WKY) rats. Both types of hearts showed optimal performance during the preischemic period when perfused at a diastolic perfusion pressure of 8.0 (WKY) and 13.3 (SHR) kPa. Hemodynamic recovery of WKY hearts during reperfusion at 8.0 kPa, following 45 min global ischemia, was satisfactory. Coronary perfusion completely normalized, contractility (dP lv/dt max) was slightly depressed and cardiac output returned, on the average, to 40% of the preischemic values. In contrast, hemodynamic function of SHR hearts reperfused at 13.3 kPa was greatly depressed, as evidenced by almost complete abolition of cardiac output, severe reduction ofdP lv/dt max and persistent underperfusion of the endocardial layers. In addition, the postischemic release of lactate dehydrogenase was retarded and enhanced. The release patterns of degradation products of adenine nucleotides showed a shift to the endstage produets xanthine and uric acid. The enhanced vulnerability of the hypertrophied heart to ischemia was even more expressed when the SHR hearts were reperfused at 8.0 kPa. Postischemic function was characterized by electrical instability, loss of contractility and cardiac output, and noreflow in the endocardial layers. Persistent accumulation of lactate and degradation products of adenine nucleotides in the postischemic hearts are in line with the lack of reperfusion. The present results indicate that a detailed mechanistic explanation for the reduced ability to withstand ischemia of SHR cannot be based on differences in ATP content or an altered anaerobic glycolitic activity prior and during ischemia. It is suggested that a defect on the circulatory level, probably caused by enhanced reactivity of the coronary vessels towards ischemia-elicited factors, is responsible for the higher vulnerability of hypertrophied heart to an ischemia insult.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 28 (1994), S. 1259-1266 
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: Two new polymeric materials (polymers A and B) containing covalently bound iodine were prepared. These polymers were evaluated with respect to their possible use as radiopaque implant biomaterials - that is, materials that are visible in a noninvasive manner using routine X-ray absorption imaging techniques. Polymer A is a copolymer of methyl methacrylate (MMA) and 1 (80 and 20 mol%, respectively). Polymer B was prepared from MMA, 1, and 2-hydroxyethyl methacrylate (HEMA) (mol ratio 65:20:15, respectively). Compound 1 was synthesized from 4-io-dophenol and methacryloyl chloride. The resulting polymers were characterized with GPC, DSC, NMR, and by measuring both the advancing and receding contact angles. Thrombogenicity of the polymers was determined by an in vitro thrombin generation test procedure. The maximum concentration of free thrombin was 76 ± 1 nM for polymer A, and 64 ± 3 nM for polymer B. The lag times (i.e., time onset of thrombin generation) were 392 seconds for polymer A and 553 seconds for polymer B. For PVC-T, which is known as a passive material, a lag time of 583 seconds was found. This indicates that polymer B is comparable to PVCT, and more passive than polymer A. Polymer A exhibited minor activation of platelets. Polymer B did not induce platelet activation at all. The polymers exhibited, even as fibers with a diameter of ca. 0.3 mm, good radiopacity with routine imaging X-ray techniques in the clinic. It is argued that polymers A and B - which actually represent a whole family of radiopaque polymeric biomaterials - exhibit promising properties with respect to applications as construction materials for a new generation of endovascular stents. © 1994 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...