Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Human Movement Science 8 (1989), S. 177-193 
    ISSN: 0167-9457
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Medicine , Sports Science
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 85 (1991), S. 423-431 
    ISSN: 1432-1106
    Keywords: Body reference ; Extraocular proprioception ; Gaze direction ; Neck proprioception ; Vibration ; Visuomanual pointing ; Visual illusion ; Human
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The egocentric localization of objects in extrapersonal space requires that the retinal and extraretinal signals specifying the gaze direction be simultaneously processed. The question as to whether the extraretinal signal is of central or peripheral origin is still a matter of controversy, however. Three experiments were carried out to investigate the following hypotheses: 1) that the proprioceptive feedback originating in eye and neck muscles might provide the CNS with some indication about the gaze direction; and 2) that the retinal and proprioceptive extraretinal inputs might be jointly processed depending on whether they are of monocular or binocular origin. Application of low amplitude mechanical vibrations to either the extraocular or neck muscles (or both) of a subject looking monocularly at a small luminous target in darkness resulted in an illusory movement of the target, the direction of which depended on which muscle was stimulated. A slow upward target displacement occurred on vibrating the eye inferior rectus or the neck sterno-cleido-mastoidus muscles, whereas a downward shift was induced when the dorsal neck muscles (trapezius and splenius) were vibrated. The extent of the perceptual effects reported by subjects was measured in an open-loop pointing task in which they were asked to point at the perceived position of the target. These results extend to visually-oriented behavior the role of extraocular and neck proprioceptive inputs previously described in the case of postural regulation, since they clearly show that these messages contribute to specifying the gaze direction. This suggests that the extraretinal signal might include a proprioceptive component. The proposition that a directional body reference frame may be based on the common processing of various proprioceptive feedbacks is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1106
    Keywords: Memory-guided saccades ; Visuo-guided saccades ; Extraocular proprioception ; Vibration ; Human
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract It is nowadays generally recognized that saccades to remembered targets are planned in a craniotopic frame of reference by combining retinal input with eye position signal. The origin of the eye position signal is still a matter of controversy, however. Does it arise from an efferent copy or is it supplied by the sensory receptors with which the extraocular muscles are endowed? When applied to skeletal muscles, vibration elicits spindle responses simulating a stretching of the vibrated muscle. When vibration is applied to the inferior rectus muscle (IR), it induces the illusion that a stationary fixating point is moving upward. Here we attempted to change the initial eye position signal supplied to the oculomotor system before a memory- or visuo-guided saccade to a 10° left target by applying mechanical vibration to the IR muscle. We wanted to determine whether modifying extraocular proprioceptive cues during the programming phase of a saccade might affect the latter's trajectory. In the memory-guided condition, it was observed that the saccades ended lower down when vibration was applied than in the control condition. Conversely, the visuo-guided saccades were not affected by the vibration. The above results mean first that extraocular proprioceptive cues are used as an initial eye position signal when a memory guided saccade has to be planned. Secondly, they suggest that extraocular proprioception may not be used to produce a visuo-guided saccade, or that this type of saccade is computed solely on the basis of retinal cues.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Biological cybernetics 66 (1991), S. 167-176 
    ISSN: 1432-0770
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Computer Science , Physics
    Notes: Abstract A neural network model for a sensorimotor system, which was developed to simulate oriented movements in man, is presented. It is composed of a formal neural network comprising two layers: a sensory layer receiving and processing sensory inputs, and a motor layer driving a simulated arm. The sensory layer is an extension of the topological network previously proposed by Kohonen (1984). Two kinds of sensory modality, proprioceptive and exteroceptive, are used to define the arm position. Each sensory cell receives proprioceptive inputs provided by each arm-joint together with the exteroceptive inputs. This sensory layer is therefore a kind of associative layer which integrates two separate sensory signals relating to movement coding. It is connected to the motor layer by means of adaptive synapses which provide a physical link between a motor activity and its sensory consequences. After a learning period, the spatial map which emerges in the sensory layer clearly depends on the sensory inputs and an associative map of both the arm and the extra-personal space is built up if proprioceptive and exteroceptive signals are processed together. The sensorimotor transformations occuring in the junctions linking the sensory and motor layers are organized in such a manner that the simulated arm becomes able to reach towards and track a target in extra-personal space. Proprioception serves to determine the final arm posture adopted and to correct the ongoing movement in cases where changes in the target location occur. With a view to developing a sensorimotor control system with more realistic salient features, a robotic model was coupled with the formal neural network. This robotic implementation of our model shows the capacity of formal neural networks to control the displacement of mechanical devices.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...