Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1435-1528
    Keywords: Key words Wheat gluten ; Glycerol ; Viscoelastic properties ; Batch mixer ; Bioplastics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Abstract The rheological behaviour of a gluten plasticized with glycerol has been studied in oscillatory shear. The mixing operation in a Haake batch mixer leads to a maximum torque for a level of specific energy (500–600 kJ/kg) and temperature (50–60 °C) quite independent of mixing conditions (rotor speed, mixing time, filling ratio). The gluten/glycerol dough behaves as a classical gluten/water dough, with a storage modulus higher than the loss modulus over the frequency range under study. A temperature increase induces a decrease of moduli, but the material is not thermorheologically simple. Glycerol has a plasticizing effect, which can be classically described by an exponential dependence. Mixing conditions influence the viscoelastic properties of the material, mainly through the specific mechanical energy input (to 2000 kJ/kg) and temperature increase (to 80 °C). Above 50 °C, specific mechanical energy highly increases the complex modulus. The aggregation of proteins, as evidenced by size-exclusion chromatography measurements, occurs later as the dough temperature reaches 70 °C. The nature of network interactions and the respective influence of hydrophobic and disulphide contribution is discussed. A general expression is proposed for describing the viscous behaviour of a gluten/glycerol mix, which could seem simplistic for such a complex rheological behaviour, but would remain sufficient for modelling the flow behaviour in a twin screw extruder.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 32 (1992), S. 206-212 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Coat-hanger dies are commonly used for the extrusion of plastic sheets and films. To describe the flow of a molten polymer through a coat-hanger die, a two-dimensional approach is necessary. Moreover, the thermal effects, which play an important role in the flow distribution, have to be taken into account. In this paper, two numerical models for the simulation of coat-hanger dies are described and compared. These models differ mainly in the simplifying assumptions used and in the treatment of the thermal problem. The simulations obtained with the two models were compared with each other and with experimental data. The discrepancies between the two models can be explained by the different theoretical treatments.
    Additional Material: 17 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...