Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Key engineering materials Vol. 254-256 (Dec. 2003), p. 781-784 
    ISSN: 1013-9826
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-4838
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine , Technology
    Notes: Cell culture models are becoming prevalent in the investigation of tissue responses to implant materials. Cellular attachment and cell adhesion studies can aid in the development of more effective orthopaedic and dental implants. Cell attachment was studied on extracellular matrix proteins (type I, IV collagen, peptide solubilized elastin (PSE), fibronectin laminin). Human osteoprogenitor cells responded differently to these collagenous and non-collagenous proteins. PSE and type I or type IV collagen are the most effective proteins in cellular attachment and cell spreading. Cell behaviour was measured in the presence of macroporous materials (Porites astreoïdes from the West Indies and a bovine hydroxyapatite ceramic ENDOBON®) and bioartificial connective matrices comprising hydroxyapatite, peptide solubilized elastin, collagen, fibronectin and chondroïtin-6-sulfate, components of the extracellular matrix (ECM). Human osteoprogenitor cells responded differently to the materials tested according to the content of components of ECM. About 40% of attached cells were obtained on the composite materials PSE, collagen, fibronectin and chondroïtin-6-sulfate, and about 10% on the macroporous materials, whatever their porosity and their chemical components. These results demonstrate a need for more effective surface treatment to promote cell attachment, cell spreading and cell growth.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-4838
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine , Technology
    Notes: Abstract The optimal function of medical implant materials used in tissue substitution is often limited due to its healing properties. This effect is linked to reduced interactions of the implants with the surrounding tissue. Implant surfaces biologically functionalized with arginine-glycine-aspartic acid (RGD) peptides, a class of cellular adhesion factors, are described in this paper. The RGD-peptides are either bound via bovine serum albumin linking on culture plastic dishes as a model surface or via acrylic acid coupling on PMMA surface as a potential implant material. Resulting functionalized surfaces aquire the capability to bind cultured osteoblasts in high levels and show high proliferation rates in vitro. These results are observed for osteoblast cultures as well as from different species with different preparation procedures. A critical minimum distance between the bioactive portion of the RGD-peptides and the implant surface of 3.0–3.5 nm is crucial for the induction of an optimum cell binding process. In vivo animal studies in the rabbit show that newly formed bone tissue generated a direct contact with the RGD-peptide coated implants. In contrast uncoated implants are separated from newly formed bone tissue by a fibrous tissue layer thereby preventing the formation of a direct implant–bone bonding.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Clinical oral investigations 4 (2000), S. 126-129 
    ISSN: 1436-3771
    Keywords: Key words Tissue engineering ; Growth factors ; Peptides ; Proteins ; Dental
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  This paper presents a short review of three groups of tools which can be or are used for the tissue engineering of mineralized oral structures: growth factor delivery systems (GFDS) and surface bioactivation with covalent bound peptides or with nanomechanically linked proteins. According to the reported personal experience of the authors, GFDS have to face the following challenging issue before being used routinely in dentistry, e.g., as a tool for reparative dentinogenesis or bone healing: adaptation of the GFDS design to the tissue where it will be implanted in order to deliver the right dose of growth factor (GF) at the right time. The bioactivation of surfaces, for example of dental implants, with covalent bound peptides or nanomechanically linked proteins represents a second innovative way to improve dental health in the future. Here we report on the experimental use of cyclic RGD peptides grafted on polymethylmethacrylate to improve osteoblast adhesion. Furthermore, we show the potential advantage of immobilizing and incorporating collagen I on titanium implant surfaces. These techniques or a combination of them will help to create improvements, for example, of dental implants in the near future. They will also help to promote bone and dentin regeneration.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...