Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Neuronal nicotinic acetylcholine receptors from bovine adrenomedullary chromaffin cells play a primary role in triggering catecholamine secretion. In the present study, their constituent subunits were characterized. In addition to the α3 subunit, which we have previously cloned, the presence of α5 and β4 but not of β2 subunits was detected by reverse transcription-PCR analysis of mRNA from adrenal medulla. In situ hybridization indicated that α3, α5, and β4 subunits are coexpressed in all chromaffin cells. The primary structure of α5 and β4 subunits was determined and functional receptors were obtained upon coinjection of subunit cRNAs into Xenopus oocytes. In contrast to other β4-containing nicotinic receptors, the ones formed by the bovine β4 subunit are insensitive to the agonist cytisine. Finally, we characterized the intergenic region of α3 and α5 subunits, which together with the β4 subunit, form a gene cluster in rats and chickens. RNase assays and the existence of overlapping cDNAs indicate that, in the bovine genome, the α3 and α5 genes overlap at their 3′ ends. This fact is probably due to inefficient transcription termination, as a result of weak polyadenylation signals.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2013
    Keywords: Allosteric model Binding Gating Neuronal nicotinic receptors Single channel
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract. Previous studies have shown that the gating mechanism of α3β4 neuronal nicotinic receptors is affected by a residue in the middle of the M2-M3 loop of the β4 subunit. We have extended the study of the same location to the α3 subunit. Bovine α3β4 receptors were mutated in position 268, substituting the residue present in wild-type receptors, i.e. leucine in α3 and asparagine in β4, for an aspartate. Wild-type and mutated α3 and β4 subunits were combined to form four different receptors. We have measured macroscopic currents in Xenopus oocytes elicited by nicotine, and related them to surface receptor expression measured with an epibatidine-binding essay. We also obtained single-channel recordings of the receptors to study their kinetic behaviour. The results were analysed in terms of an allosteric model with three states. We found that the effect of the mutation in the α3 subunit on the gating of the receptor was similar to the corresponding mutation in the β4 subunit. The effect when both subunits were mutated was additive, suggesting that the contribution of each subunit to the gating mechanism is independent.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...