Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of medicinal chemistry 14 (1971), S. 698-702 
    ISSN: 1520-4804
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of organic chemistry 27 (1962), S. 3006-3010 
    ISSN: 1520-6904
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 402 (1982), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Notes: SummaryThe Ca2+-pump ATPase of human RBC membranes appears to be exquisitely sensitive to a variety of amphipathic molecules. The acidic protein calmodulin (CaM) activates the enzyme some three- to fivefold with an apparent Kd of approximately 1–5 nM. A variety of other amphipathic anions, such as acidic phospholipids, free fatty acids, and anionic detergents, are less potent and in some cases less efficacious than CaM, but also activate the enzyme. Similar results have been observed for other CaM-dependent enzymes, and it is suggested that these agents mimic CaM in a general, but rather nonspecific, fashion. Activation of the human RBC Ca2+-pump ATPase by CaM or other amphipathic anions can be selectively antagonized by a wide variety (structurally and pharmacologically) of amphipathic cations. There is no simple relationship between antagonism of CaM in vitro and the general systemic pharmacology of these drugs. The only common feature of such drugs is that they are amphipathic cations. Neutral molecules such as saponin exerted neither CaM-like activity nor CaM antagonism. Great caution is urged in the inferential use of presumed anti-CaM drugs to study biological systems.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 356 (1980), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 307 (1978), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 356 (1980), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 213 (1967), S. 394-395 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The spontaneously beating rabbit sino-atrial node was isolated, perfused and prepared for stimulation of the intranodal autonomic nerve fibres and recording of spontaneous beat interval as previously described7. Intranodal autonomic nerve fibres were stimulated every 180 sec throughout each ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 58 (1981), S. 57-65 
    ISSN: 1432-1424
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary Inside-out vesicles prepared from human red blood cells took up Ca2+ by an active transport process. Membranes from the same red blood cells displayed Ca2+-activated, Mg2+-dependent adenosine triphosphatase activity. Both the initial rate of Ca2+ transport and the (Ca2++Mg2+)-adenosine triphosphatase activity were increased approximately twofold by the calcium binding protein, calmodulin. Activities in the absence of added calmodulin were termed basal activities. Calmodulin-activated Ca2+ transport and adenosine triphosphatase activities could be antagonized in a relatively selective fashion by the phenothiazine tranquilizer drug, trifluoperazine. High concentrations of trifluoperazine also inhibited basal Ca2+ transport and adenosine triphosphatase activity. By contrast, calmodulin binding protein from beef brain selectively antagonized the effect of calmodulin on Ca2+ transport with no inhibition of basal activity. Ruthenium red antagonized calmodulin-activated and basal activity with equal potency. The results demonstrate that although phenothiazines can act as relatively selective antagonists of calmodulin-induced effects, other effects are possible and cannot be ignored. Calmodulin-binding protein may be a useful tool in the analysis of calmodulin functions. Ruthenium red probably interacts with Ca2+ pump adenosine triphosphatase at a site not related to calmodulin.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Supramolecular Structure 7 (1977), S. 301-306 
    ISSN: 0091-7419
    Keywords: cytoplasmic activator ; red blood cells ; membrane ATPase ; Ca2+ transport ; (Ca2+-Mg2+)ATPase ; Life Sciences ; Molecular Cell Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Human red blood cells (RBC) contain a cytoplasmic, nonhemoglobin protein which activates the (Ca2+-Mg2+) ATPase of isolated RBC membranes. Results presented in this paper confirm that activation of (Ca2+-Mg2+)ATPase is associated with binding of the cytoplasmic activator to the membrane. Binding of the cytoplasmic activator is reversible and dependent on ionic strength and Ca2+. Cytoplasmic activator is sensitive to trypsin but is not degraded when intact RBC are exposed to trypsin. Cytoplasmic activator does not modify the (Ca2+-Mg2+)-ATPase of membranes from RBC exposed to activator prior to hemolysis. Thus, the activator is located in the cell and appears to act by binding to the inner membrane surface.
    Additional Material: 4 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Supramolecular Structure 9 (1978), S. 269-274 
    ISSN: 0091-7419
    Keywords: modulator-binding protein ; (Ca2+ + Mg2+)-ATPase ; calcium transport ; red blood cell membrane ; calcium-dependent regulator protein ; Life Sciences ; Molecular Cell Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Red blood cells contain a protein that activates membrane-bound (Ca2+ + Mg2+)-ATPase and Ca2+ transport. The red blood cell activator protein is similar to a modulator protein that stimulates cyclic AMP phosphodiesterase. Wang and Desai [Journal of Biological Chemistry 252:4175-4184, 1977] described a modulator-binding protein that antagonizes the activation of cyclic AMP phosphodiesterase by modulator protein. In the present work, modulator-binding protein was shown to antagonize the activation of (Ca2+ + Mg2+)-ATPase and Ca2+ transport by red blood cell activator protein. The results further demonstrate the similarity between the activator protein from human red blood cells and the modulator protein from bovine brain.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...