Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1424
    Keywords: nerve fibers ; membrane ; transport ; phosphate ; calcium ; Ca ionophore ; Na/Ca exchange
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary Phosphate efflux was measured as the fractional rate of loss of radioactivity from desheathed rabbit vagus nerves after loading with radiophosphate. The effects of strategies designed to increase intracellular calcium were investigated. At the same time, the exchangeable calcium content was measured using45Ca. Application of calcium ionophore A23187 increased phosphate efflux in the presence of external calcium in parallel with an increase in calcium content. In the absence of external calcium, there was only a late, small increase in phosphate efflux. For nerves already treated with the calcium ionophore, the phosphate efflux was sensitive to small changes in external calcium, in the range 0.2 to 2mm calcium, whereas similar increases in calcium in absence of ionophore gave much smaller increases in phosphate efflux. Removal of external sodium (choline substitution) produced an initial increase in phosphate efflux followed by a fall. The initial increase in phosphate efflux was much larger in the presence of calcium, than in its absence. The difference was again paralleled by an increase in calcium content of the preparation, thought to be due to inhibition of Na/Ca exchange by removal of external sodium. Measurements of ATP content and ATP, ADP, phosphate and creatine phosphate ratios did not indicate significant metabolic changes when the calcium content was increased. Stimulation of phosphate efflux by an increase in intracellular calcium may be due to stimulation of phospholipid metabolism. Alternatively, it is suggested that stimulation of phosphate efflux is associated with the stimulation of calcium efflux, possibly by cotransport of calcium and phosphate.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 103 (1988), S. 121-134 
    ISSN: 1432-1424
    Keywords: mammalian nerve ; calcium efflux ; exchangeable calcium ; mitochondrial buffering ; Na−Ca exchange
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary Calcium efflux was measured in desheathed rabbit vagus nerves loaded with45Ca2+. The effects of extracellular calcium, sodium, phosphate, potassium and lanthanum ions on the calcium efflux were investigated and the distribution of intracellular calcium determined by kinetic analysis of45Ca2+ efflux profiles. The45Ca2+ desaturation curve can be adequately described by three exponential terms. The rate constant of the first component (0.2 min−1) corresponds to an efflux from an extracellular compartment. The two slow components had rate constants of 0.03 and 0.08 min−1 and represent the efflux from two intracellular pools. The amounts of exchangeable calcium in these two pools, after a loading period of 150 min, were 0.170 and 0.102 mmol/kg wet weight, respectively. The total calcium efflux in physiological conditions amounted to about 24 fmol cm−2 sec−1. The magnitude of the two intracellular compartments as well as the total calcium efflux were markedly affected by extracellular phosphate, sodium and lanthanum, whereas the corresponding rate constants remained almost unchanged. Phosphate reversed the effect of sodium withdrawal on the calcium efflux: in the absence of phosphate, sodium withdrawal increased the calcium efflux to 224%, but in the presence of phosphate, sodium withdrawal decreased calcium efflux to 44%. Phosphate also affected the increase in calcium efflux produced by inhibitors of mitochondrial calcium uptake, suggesting that two different mitochondrial pools contribute to the control and regulation of intracellular calcium and of the transmembrane calcium transport.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1424
    Keywords: mammalian nerve ; intracellular calcium ; membrane-bound calcium ; calcium buffering ; Na/Ca exchange ; electrical activity ; A23187
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary A new technique for continuous monitoring of the cellular calcium was developed and used for studying the effects of external and internal Na (Na o and Na i ), external Ca (Ca o ), Ca ionophore A23187, and electrical activity on membrane-bound and intracellular Ca in mammalian nonmyelinated nerve fibers. Increasing Ca o increased both the membrane-bound and the intracellular Ca. Lowering Na o increased the membrane-bound fraction of Ca indicating that lack of Na o enhanced the capacity of the plasma membrane to bind Ca, and produced an increase of the internal Ca pool. Increasing Na i by treatment with ouabain enhanced the Ca inflow in both, the presence and absence of Na o , presumably by stimulating the Ca o /Na i exchange. The Ca ionophore A13187 produced a large and irreversible increase in the intracellular Ca without affecting the membrane-bound fraction. On the other hand, electrical activity, which is known to produce a large increase of the total Ca in squid axon, had no measurable effect on the total calcium content in our preparation. It is concluded that in mammalian nerve fibers a Ca load by exposition to Na-free solution or to A23187 produces an accumulation of Ca into the intracellular Ca stores, whereas during electrical activity the membrane-associated extrusion mechanisms are able to maintain the intracellular Ca2+ below the threshold for intracellular sequestration. Furthermore, the results indicate that the intracellular sequestration mechanisms are dependent on the internal concentration of Na.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...