Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Although originally cloned from rat brain, the P2X7 receptor has only recently been localized in neurones, and functional responses mediated by these neuronal P2X7 receptors (P2X7R) are largely unknown. Here we studied the effect of P2X7R activation on the release of neurotransmitters from superfused rat hippocampal slices. ATP (1–30 mm) and other ATP analogues elicited concentration-dependent [3H]GABA outflow, with the following rank order of potency: benzoylbenzoylATP (BzATP) 〉 ATP 〉 ADP. PPADS, the non-selective P2-receptor antagonist (3–30 µm), Brilliant blue G (1–100 nm) the P2X7-selective antagonist and Zn2+ (0.1–30 µm) inhibited, whereas lack of Mg2+ potentiated the response by ATP. In situ hybridization revealed that P2X7R mRNA is expressed in the neurones of the cell body layers in the hippocampus. P2X7R immunoreactivity was found in excitatory synaptic terminals in CA1 and CA3 region targeting the dendrites of pyramidal cells and parvalbumin labelled structures. ATP (3–30 µm) and BzATP (0.6–6 µm) elicited concentration-dependent [14C]glutamate efflux, and blockade of the kainate receptor-mediated transmission by CNQX (10–100 µm) and gadolinium (100 µm), decreased ATP evoked [3H]GABA efflux. The Na+ channel blocker TTX (1 µm), low temperature (12°C), and the GABA uptake blocker nipecotic acid (1 mm) prevented ATP-induced [3H]GABA efflux. Brilliant blue G and PPADS also reduced electrical field stimulation-induced [3H]GABA efflux. In conclusion, P2X7Rs are localized to the excitatory terminals in the hippocampus, and their activation regulates the release of glutamate and GABA from themselves and from their target cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The release of adenosine and ATP evoked by electrical field stimulation in rat hippocampal slices was investigated with the following two patterns of stimulation: (1) a brief, high-frequency burst stimulation (trains of stimuli at 100 Hz for 50 ms applied every 2 s for 1 min), to mimic a long-term potentiation (LTP) stimulation paradigm, and (2) a more prolonged (3 min) and low-frequency (5 Hz) train stimulation, to mimic a long-term depression (LTD) stimulation paradigm. The release of ATP was greater at a brief, high-frequency burst stimulation, whereas the release of [3H]adenosine was slightly greater at a more prolonged and low-frequency stimulation. To investigate the source of extracellular adenosine, the following two pharmacological tools were used; α,β-methylene ADP (AOPCP), an inhibitor of ecto-5′-nucleotidase, to assess the contribution of the catabolism of released adenine nucleotides as a source of extracellular adenosine, and S-(4-nitrobenzyl)-6-thioinosine (NBTI), an inhibitor of adenosine transporters, to assess the contribution of the release of adenosine, as such, as a source of extracellular adenosine. At low-frequency stimulation, NBTI inhibited by nearly 50% the evoked outflow of [3H]adenosine, whereas AOPCP inhibited [3H]adenosine outflow only marginally. In contrast, at high-frequency stimulation, AOPCP inhibited by 30% the evoked release of [3H]adenosine, whereas NBTI produced a 40% inhibition of [3H]adenosine outflow. At both frequencies, the kinetics of evoked [3H]adenosine outflow was affected in different manners by AOPCP and NBTI; NBTI mainly depressed the rate of evoked [3H]adenosine outflow, whereas AOPCP mainly inhibited the later phase of evoked [3H]adenosine accumulation. These results show that there is a simultaneous, but quantitatively different, release of ATP and adenosine from rat hippocampal slices stimulated at frequencies that can induce plasticity phenomena such as LTP (100 Hz) or LTD (5 Hz). The source of extracellular adenosine is also different according to the frequency of stimulation; i.e., at a brief, high-frequency stimulation there is a greater contribution of released adenine nucleotides for the formation of extracellular adenosine than at a low frequency with a more prolonged stimulation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The effect of lanthanum ions (La3+) on the release of acetylcholine (ACh) from longitudinal muscle strips of the guinea pig ileum with the myenteric plexus attached was investigated. After an exposure of the tissue to 2 mM LaCl3 for 18 min the rate of ACh release was increased approximately eightfold and the increased release lasted for more than 100 min. The augmented release of ACh was accompanied by enhanced synthesis. At the end of the experiments (102 min after LaCl3 had been removed), when the release of ACh was still more than six times higher than in controls, the content of ACh was the same in La3+-treated and un treated tissues. Electrical field stimulation failed to cause a further increase in the release of ACh from La3+-pretreated preparations whereas ouabain released considerable more ACh when compared to controls. It is concluded from this difference that electrical stimulation and ouabain release ACh from different pools.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract : The aim of our study was to investigate the effect of different monoamine uptake blockers on the nicotine-evoked release of [3H]noradrenaline ([3H]NA) from rat hippocampal slices. We found that desipramine (DMI), nisoxetine, cocaine, citalopram, and nomifensine inhibit the nicotine-evoked release of [3H]NA with an IC50 of 0.36, 0.59, 0.81, 0.93, and 1.84 μM, respectively. These IC50 values showed no correlation with the inhibitory effect (Ki) of monoamine uptake blockers on the neuronal NA transporter (r = 0.17, slope = 0.02), indicating that the NA uptake system is not involved in the process. In whole-cell patch clamp experiments neither drug blocked Na+ currents at 1 μM in sympathetic neurons from rat superior cervical ganglia, and only DMI produced a pronounced inhibition (52% decrease) at 10 μM. Comparison of the effect of DMI and tetrodotoxin (TTX) on the electrical stimulation- and nicotine-evoked release of [3H]NA showed that DMI, in contrast to TTX, inhibits only the nicotine-induced response, indicating that the target of DMI is not the Na+ channel. Our data suggest that monoamine uptake blockers with different chemical structure and selectivity are able to inhibit the nicotinic acetylcholine receptors in the CNS. Because these compounds are widely used in the therapy of depressed patients, our findings may have great importance in the evaluation of their clinical effects.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Neuronally enriched primary cerebrocortical cultures were exposed to glucose-free medium saturated with argon (in vitro ischemia) instead of oxygen (normoxia). Ischemia did not alter P2X7 receptor mRNA, although serum deprivation clearly increased it. Accordingly, P2X7 receptor immunoreactivity (IR) of microtubuline-associated protein 2 (MAP2)-IR neurons or of glial fibrillary acidic protein (GFAP)-IR astrocytes was not affected; serum deprivation augmented the P2X7 receptor IR only in the astrocytic, but not the neuronal cell population. However, ischemia markedly increased the ATP- and 2′-3′-O-(4-benzoylbenzoyl)-adenosine 5′-triphosphate (BzATP)-induced release of previously incorporated [3H]GABA. Both Brilliant Blue G and oxidized ATP inhibited the release of [3H]GABA caused by ATP application; the Brilliant Blue G-sensitive, P2X7 receptor-mediated fraction, was much larger after ischemia than after normoxia. Whereas ischemic stimulation failed to alter the amplitude of ATP- and BzATP-induced small inward currents recorded from a subset of non-pyramidal neurons, BzATP caused a more pronounced increase in the frequency of miniature inhibitory postsynaptic currents (mIPSCs) after ischemia than after normoxia. Brilliant Blue G almost abolished the effect of BzATP in normoxic neurons. Since neither the amplitude of mIPSCs nor that of the muscimol-induced inward currents was affected by BzATP, it is assumed that BzATP acts at presynaptic P2X7 receptors. Finally, P2X7 receptors did not enhance the intracellular free Ca2+ concentration either in proximal dendrites or in astrocytes, irrespective of the normoxic or ischemic pre-incubation conditions. Hence, facilitatory P2X7 receptors may be situated at the axon terminals of GABAergic non-pyramidal neurons. When compared with normoxia, ischemia appears to markedly increase P2X7 receptor-mediated GABA release, which may limit the severity of the ischemic damage. At the same time we did not find an accompanying enhancement of P2X7 mRNA or protein expression, suggesting that receptors may become hypersensitive because of an increased efficiency of their transduction pathways.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of medicinal chemistry 30 (1987), S. 1355-1359 
    ISSN: 1520-4804
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: In this study we investigated the effect of cannabinoids on [3H]glutamate release from hippocampal synaptosomes of rat and CB1-null mutant mouse. In the rat, cannabinoid receptor agonists, i.e. CP55,940 (EC50, 0.84 μm), WIN55,212-2 (EC50, 3.47 μm), ACEA (EC50, 17.8 μm), and R-(+)-methanandamide (EC50, 19.8 μm) concentration-dependently inhibited the 25-mm-K+ depolarization-evoked release of [3H]glutamate and, among them, WIN55,212-2 displayed the greatest efficacy. The CB1 receptor antagonists SR141716A (1–5 μm) and AM251 (1 μm) and the VR1 vanilloid receptor antagonist capsazepine (10 μm) did not antagonize the effect of the agonists. SR141716A by itself attenuated the evoked [3H]glutamate release. WIN55,212-2 inhibited the release of [3H]glutamate in \mathrm{CB}^{\,-/-\,}_{1} mice as well. These data demonstrate that the action of cannabinoids on glutamate release in the hippocampus is pharmacologically distinct and independent from the cloned CB1 receptor.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-2072
    Keywords: Electroshock-induced seizures ; yohimbine ; α2-adrenoceptors ; serotonin receptors ; mouse
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The threshold of seizures induced by electroconvulsive shock (ECS) was determined in mice and the effects of α2-adrenoceptor antagonists (yohimbine, rauwolscine, idazoxan), α2-adrenoceptor agonists (clonidine, B-HT 920), serotonin antagonists (methysergide, metergoline) and a serotonin agonist (quipazine) were studied. The interaction of yohimbine with clonidine, methysergide, metergoline and quipazine was also examined. It was found that yohimbine and rauwolscine elevated the seizure threshold, while idazoxan was ineffective. Clonidine and B-HT 920 were also ineffective, but quipazine elevated the seizure threshold. Methysergide and metergoline did not change the seizure threshold alone, but both of them antagonized the anticonvulsant effect of yohimbine. Clonidine failed to antagonize yohimbine's effects. Quipazine potentiated yohimbine's action. These results suggest that, in mice, the protective effect of yohimbine against ECS-induced seizures may be mediated via serotonin receptors and not via α2-adrenoceptors.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Digestive diseases and sciences 35 (1990), S. 501-507 
    ISSN: 1573-2568
    Keywords: pancreas ; amylase secretion ; cholinergic control ; adrenergic control ; rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract While cholinergic nervous control of pancreatic enzyme secretion is well documented, data concerning adrenergic regulation of the exocrine pancreas are contradictory. In the present study we attempted to elucidate the direct action of adrenergic stimulation on pancreatic enzyme secretion. Rat pancreatic segments were set up in an organ bath and superfused with modified Krebs-Henseleit solution. Electrical field stimulation (EFS) stimulated amylase release from the segments. This stimulation was subject to inhibition with atropine up to 80%. Atropine-resistant enzyme discharge in response to EFS could be blocked by propranolol. Cholinergic agonist urecholine-induced amylase release was completely blocked by atropine. Noradrenaline (NA) exhibited a biphasic effect on amylase release. It inhibited the urecholine-induced amylase release in lower concentrations (10−8-10−7 M), while it stimulated basal enzyme secretion in higher concentrations (10−5-10−4 M). The inhibitory effect was mimicked by phenylephrine and completely prevented by prazosin. Isoprenaline concentration dependently enhanced, while clonidine and guanfacine did not affect amylase discharge. In conclusion, in rat pancreatic acinar tissue it seems likely that acetylcholine is the main neurotransmitter. Adrenergic action can be dual, inhibitory via α1-adrenoceptors or stimulatory via β-adrenoceptors on amylase secretion.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 349 (1994), S. 34-41 
    ISSN: 1432-1912
    Keywords: Key words: Human fat cell – Lipolysis –α2A-adrenoceptors – Interplay of α2A- and β-adrenoceptors
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract. The effects of α2-adrenoceptor agonists (dexmedetomidine, oxymetazoline), alone or in combination with various α-adrenoceptor subtype-selective antagonists (CH-38083, idazoxan, WB4101, BRL44408, ARC-239, prazosin), on noradrenaline- and isoprenaline-induced lipolysis were investigated in human isolated abdominal subcutaneous fat cells. The rank order of potency of antagonists in preventing dexmedetomidine- and oxymetazoline-evoked suppression of isoprenaline-induced lipolysis was (pA2-values): CH-38083 (7.69 and 7.48)≃idazoxan (7.5 and 7.41)〈BRL44408 (7.23 and 7.19)≃WB4101 (7.13 and 7.12)〈prazosin (5.18 and 5.17)〈ARC-239 (4.72, 4.9). While CH-38083 and idazoxan, non-subtype selective α2-adrenoceptor antagonists and BRL44408, a selective α2A-adrenoceptor antagonist as well as WB4101 potentiated the lipolytic effect of noradrenaline, ARC-239, the selective α2B-adrenoceptor antagonist failed to affect it. In addition since the α2A-adrenoceptor selective agonist, oxymetazoline concentration dependently inhibited the lipolytic effect of isoprenaline, and WB4101 and BRL44408 (α2A-adrenoceptor antagonists) antagonised the effect of oxymetazoline in a competitive manner, it is concluded that the α2A-adrenoceptor subtype is involved in antilipolysis. In addition, functional evidence was obtained that there is an interaction between α2A- and β-adrenoceptors located on the cell surface of adipocytes, through which locally released noradrenaline and/or circulating circulating adrenaline influence lipolysis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...